بهینه سازی فرآیند اکسیداسیون پیشرفته رادیکال سولفاتی برای کاهش مواد آلی فاضلاب کارخانه خمیر و کاغذ با استفاده از روش سطح پاسخ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، کرسی یونسکو در بازیافت آب، دانشکده مهندسی شیمی، دانشکدگان فنی، دانشگاه تهران، تهران، ایران.

2 استاد، کرسی یونسکو در بازیافت آب، دانشکده مهندسی شیمی، دانشکدگان فنی، دانشگاه تهران، تهران، ایران.

3 پژوهشگر پسا دکترا، کرسی یونسکو در بازیافت آب، دانشکده مهندسی شیمی، دانشکدگان فنی، دانشگاه تهران، تهران، ایران.

چکیده

صنایع خمیر و کاغذ به ‎عنوان یکی از بزرگ‎ترین صنایع مصرف‎ کننده آب در دنیا شناخته می‎شوند و تصفیه فاضلاب آن‌ها به ‎دلیل داشتن بار آلی بالا با روش‎های مرسوم تصفیه فاضلاب نظیر تصفیه بیولوژیکی و ته‎نشینی نمی‎تواند به استانداردهای مطلوب محیط‌زیستی برسد. فرآیندهای اکسیداسیون پیشرفته به‌عنوان راه‎حلی مطلوب، به‌دلیل داشتن قدرت بالای اکسندگی و هم‌چنین هزینه عملیاتی پایین در مقایسه با سایر روش‌ها، مورد توجه قرار‎گرفته‎اند. این فرآیندها انواع متفاوتی دارند که براساس نوع تولید رادیکال‌ها به دو دسته اصلی رادیکال‌های هیدروکسیلی و رادیکال‌های سولفاتی تقسیم می‎شوند و بسته به شرایط و هدف به‌کارگیری آن‌ها، انتخاب می‎شوند. در این تحقیق با استفاده از طراحی آزمایش به‌روش سطح پاسخ  (RSM) دو عامل غلظت اولیه اکسید کننده و pH در کارآیی روش رادیکال سولفاتی بهینه‌سازی شد. برای بررسی هرکدام از پارامتر­های موثر، حذف مواد آلی برحسب اکسیژن مورد نیاز شیمیایی (COD) در پایان هر آزمایش اندازه‎گیری شد. با استفاده از این روش در حالت بیشینه می‌توان مقدار 75 درصد از COD اولیه موجود را حذف کرد. در حالت بهینه اقتصادی با غلظت اولیه بدون بعد پروکسی دی‎سولفات 407/0 و pH اولیه 37/8، درصد حذف COD برابر 53/53 درصد به‎ دست آمد.

کلیدواژه‌ها


Ahmadi, A., Sarrafzadeh, M.-H., Hosseinian, A., and Ghaffari, S.-B., (2022), “Foulant layer degradation of dye in Photocatalytic Membrane Reactor (PMR) containing immobilized and suspended NH2-MIL125(Ti) MOF led to water flux recovery”, Journal of Environmental Chemical Engineering, 10(1), 106999, https://doi.org/10.1016/j.jece.2021.106999.
Amor, C., Fernandes, J.R., Lucas, M.S., and Peres, J.A., (2021), “Hydroxyl and sulfate radical advanced oxidation processes: Application to an agro-industrial wastewater”, Environmental Technology and Innovation, 21, 101183, https://doi.org/10.1016/j.eti.2020.101183.
Amor, C., Rodríguez-Chueca, J., Fernandes, J.L., Domínguez, J.R., Lucas, M.S., and Peres, J.A., (2019), “Winery wastewater treatment by sulphate radical based-advanced oxidation processes (SR-AOP): Thermally vs UV-assisted persulphate activation”, Process Safety and Environmental Protection, 122, 94-101, https://doi.org/10.1016/j.psep.2018.11.016.
Anandan, S., Kumar Ponnusamy, V., and Ashokkumar, M., (2020), “A review on hybrid techniques for the degradation of organic pollutants in aqueous environment”, Ultrasonics Sonochemistry, 67, 105130, . https://doi.org/10.1016/j.ultsonch.2020.105130.
American Public Health Association (APHA), (2017), Standard methods for the examination of water and wastewater, 23th Edition, University of California, USA, 1268 p.
Babaei, A.A. and Ghanbari, F., (2016), “COD removal from petrochemical wastewater by UV/hydrogen peroxide, UV/persulfate and UV/percarbonate: Biodegradability improvement and cost evaluation”, Journal of Water Reuse and Desalination, 6(4), 484-494, https://doi.org/10.2166/wrd.2016.188.
Bashir, M.J.K., Sheen, O.S., Ng, C.A., Abujazar, M.S.S., Alazaiza, M.Y.D., and Abu Amr, S.S., (2022), “Advanced treatment of palm oil mill effluent using thermally activated persulfate oxidation”, Separations, 9(7), 171, https://doi.org/10.3390/separations9070171.
Boczkaj, G., and Fernandes, A., (2017), “Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review”, Chemical Engineering Journal, 320, 608-633, https://doi.org/10.1016/j.cej.2017.03.084.
Carvalho Neves, L., Beber de Souza, J., de Souza Vidal, C.M., Herbert, L.T., de Souza, K.V., Geronazzo Martins, K., and Young, B.J., (2020), “Phytotoxicity indexes and removal of color, COD, phenols and ISA from pulp and paper mill wastewater post-treated by UV/H2O2 and photo-Fenton”, Ecotoxicology and Environmental Safety, 202, 110939, https://doi.org/10.1016/j.ecoenv.2020.110939.
Chen, C., Feng, H., and Deng, Y., (2019), “Re-evaluation of sulfate radical based–advanced oxidation processes (SR-AOPs) for treatment of raw municipal landfill leachate”, Water Research, 153, 100-107, https://doi.org/10.1016/j.watres.2019.01.013.
Chong, M.N., Jin, B., Chow, C.W.K., and Saint, C., (2010), “Recent developments in photocatalytic water treatment technology: A review”, Water Research, 44(10), 2997-3027, https://doi.org/10.1016/j.watres.2010.02.039.
Deng, Y., and Ezyske, C.M., (2011), “Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate”, Water Research, 45(18), 6189-6194, https://doi.org/10.1016/j.watres.2011.09.015.
Giannakis, S., Lin, K.-Y.A., and Ghanbari, F., (2021), “A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs)”, Chemical Engineering Journal, 406, 127083, https://doi.org/10.1016/j.cej.2020.127083.
Jaafarzadeh, N., Omidinasab, M., and Ghanbari, F., (2016), “Combined electrocoagulation and UV-based sulfate radical oxidation processes for treatment of pulp and paper wastewater”, Process Safety and Environmental Protection, 102, 462-472, https://doi.org/10.1016/j.psep.2016.04.019.
Jung, C., Deng, Y., Zhao, R., and Torrens, K., (2017), “Chemical oxidation for mitigation of UV-quenching substances (UVQS) from municipal landfill leachate: Fenton process versus ozonation”, Water Research, 108, 260-270, https://doi.org/10.1016/j.watres.2016.11.005.
Khataee, A.R., (2010), “Optimization of UV‐promoted peroxydisulphate oxidation of C.I. Basic Blue 3 using response surface methodology”, Environmental Technology, 31(1), 73-86, https://doi.org/10.1080/09593330903358302.
Lou, X., Xiao, D., Fang, C., Wang, Z., Liu, J., Guo, Y., and Lu, S., (2016), “Comparison of UV/hydrogen peroxide and UV/peroxydisulfate processes for the degradation of humic acid in the presence of halide ions”, Environmental Science and Pollution Research, 23(5), 4778-4785, https://doi.org/10.1007/s11356-015-5232-x.
Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E., and Hübner, U., (2018), “Evaluation of advanced oxidation processes for water and wastewater treatment, A critical review”, Water Research, 139, 118-131, https://doi.org/10.1016/j.watres.2018.03.042.
Milh, H., Yu, X., Cabooter, D., and Dewil, R., (2021), “Degradation of ciprofloxacin using UV-based advanced removal processes: Comparison of persulfate-based advanced oxidation and sulfite-based advanced reduction processes”, Science of The Total Environment, 764, 144510, https://doi.org/10.1016/j.scitotenv.2020.144510.
Oller, I., Malato, S., and Sánchez-Pérez, J.A.A., (2011), “Combination of advanced oxidation processes and biological treatments for wastewater decontamination, A review”, Science of The Total Environment, 409(20), 4141-4166, https://doi.org/10.1016/j.scitotenv.2010.08.061.
Pishbin, M., Sarrafzadeh, M.-H., and Faramarzi, M.A., (2021), “Nitrate and Phosphate removal efficiency of synechococcus elongatus under mixotrophic and heterotrophic conditions for wastewater treatment”, Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45(3), 1831-1843, https://doi.org/10.1007/s40996-020-00514-6.
Pokhrel, D., and Viraraghavan, T., (2004), “Treatment of pulp and paper mill wastewater, A review”, Science of The Total Environment, 333(1-3), 37-58, https://doi.org/10.1016/j.scitotenv.2004.05.017.
Pour Hosseini, S.R., Tavakoli, O., and Sarrafzadeh, M.H., (2017), “Experimental optimization of SC-CO2 extraction of carotenoids from Dunaliella salina”, The Journal of Supercritical Fluids, 121(3), 89-95, https://doi.org/10.1016/j.supflu.2016.11.006.
Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M.-H., Rene, E.R., and Firoozbahr, M., (2020), “Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives”, Process Safety and Environmental Protection, 143, 138-163, https://doi.org/10.1016/j.psep.2020.05.034.
Shon, H.K., Vigneswaran, S., and Snyder, S.A., (2006), “Effluent Organic Matter (EfOM) in wastewater: Constituents, effects, and treatment”, Critical Reviews in Environmental Science and Technology, 36(4), 327-374, https://doi.org/10.1080/10643380600580011.
Wacławek, S., Lutze, H.V., Grübel, K., Padil, V.V.T., Černík, M., and Dionysiou, D.D., (2017), “Chemistry of persulfates in water and wastewater treatment: A review”, Chemical Engineering Journal, 330, 44-62, https://doi.org/10.1016/j.cej.2017.07.132.
Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A., and Pokomeda, K., (2014), “Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process”, Bioresource Technology, 160, 150-160, https://doi.org/10.1016/j.biortech.2014.01.021.
Yang, J., Liu, Z., Zeng, Z., Huang, Z., and Cui, Y., (2019), “A method for removing persulfate interference in the analysis of the chemical oxygen demand in wastewater”, Environmental Chemistry Letters, 17(2), 1085-1089, https://doi.org/10.1007/s10311-018-00832-2.
Yang, Q., Ma, Y., Chen, F., Yao, F., Sun, J., Wang, S., Yi, K., Hou, L., Li, X., and Wang, D., (2019), “Recent advances in photo-activated Sulfate Radical-Advanced Oxidation Process (SR-AOP) for refractory organic pollutants removal in water”, Chemical Engineering Journal, 378, 122149, https://doi.org/10.1016/j.cej.2019.122149.
Yi, X.-H., Ji, H., Wang, C.-C., Li, Y., Li, Y.-H., Zhao, C., Wang, A., Fu, H., Wang, P., Zhao, X., and Liu, W., (2021), “Photocatalysis-activated SR-AOP over PDINH/MIL-88A(Fe) composites for boosted chloroquine phosphate degradation: Performance, mechanism, pathway and DFT calculations”, Applied Catalysis B: Environmental, 293, 120229, https://doi.org/10.1016/j.apcatb.2021.120229.