مطالعه حذف نیترات از فاضلاب خام شهری (تهران) توسط خاک اره درخت گردو به‌روش جذب سطحی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه شیمی، دانشگاه پیام نور، تهران، ایران.

2 کارشناسی ارشد مهندسی شیمی، گروه مهندسی شیمی، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران.

3 استادیار، گروه مهندسی شیمی، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران.

چکیده

در این مقاله، حذف نیترات از فاضلاب خام شهری (تهران) توسط خاک اره درخت گردو به‌روش جذب سطحی به‌عنوان یک روش سبز کارآمد معرفی شد و تأثیر پارامترهای مختلف مورد بررسی قرارگرفت. نتایج به‌دست آمده از ایزوترم‎های لانگمویر 9951/0  = R2 و فروندلیچ 9936/0 = R2 نشان‌دهنده جذب بهتر در غلظت‌های پایین است که از مدل لانگمویر پیروی می‌کند. برای تکمیل مطالعات حاضر، نمودار جذب، تأثیر pH، مطالعات ترمودینامیکی و سینتیکی بررسی شد. مطالعات سینتیکی نشان داد که فرآیند جذب سطحی نیترات توسط خاک اره درخت گردو از سینتیک شبه مرتبه اول پیروی می‎کند. هم‌چنین ظرفیت جذب به‌دست آمده از این معادله 2/34 میلی‎گرم بر گرم است که به‌مقدار تجربی آن 32 میلی‎گرم بر گرم نزدیک است. نتایج نشان‌داد که این فرآیند با جذب فیزیکی برگشت‌پذیر کنترل می‎شود. با توجه به طیف FT-IR جاذب، پدیده جذب نیترات با کمک ساختار سلولزی جاذب صورت‌می‎گیرد. استفاده از خاک اره درخت گردو (سایز میکرو) بدون اصلاح شیمیایی به‌عنوان یک جاذب طبیعی، سبز، دوستدار محیط‌زیست، کارآمد و موثر در حذف نیترات‌ها از فاضلاب خام شهر تهران از ویژگی‌های مهم این تحقیق بود.

کلیدواژه‌ها


احمد پری، ه.، و هاشمی گرم دره، س.، (1398)، " کاربرد دیواره دنیتریفیکاسیون در حذف نیترات از سفره‎های آب زیرزمینی"، نشریه علوم و مهندسی آب و فاضلاب، 4(3)، 13-25.
احمد پری، ه.، و هاشمی گرم‌دره، س.ا.، (1397)، "مروری بر کارایی راکتورهای زیستی دنیتریفیکاسیون در حذف نیترات از زهاب کشاورزی"، نشریه علوم و مهندسی آب و فاضلاب، 3(4)، 73-89.
اسلامپور، غ.، (1389)، طیف‌سنجی مولکولی، انتشارات دانشگاه پیام نور، تهران، ایران.
اکبری، ب.، نوروزی، پ.، و گنجعلی، م.، (1385)، مبانی طیف‌بینی اتمی و مولکولی، انتشارات دانشگاه تهران، تهران، ایران.
یادگاری، ف.، عبداله‌زاده شرقی، ا.، و عدل، م.، (1396)، "حذف بیولوژیکی نیترات از آب آشامیدنی در سیستم هیبریدی بیوراکتور انوکسیک - بیوراکتور غشایی"، نشریه علوم و مهندسی آب و فاضلاب، 2(2)، 24-33.
AWWA, (1990), Water quality and treatment, 4th Edition, Mc Grow-Hill. Inc.
Akhtar, K., Akhtar, M.W., and Khalid, A.M., (2007), "Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum", Water Research, 41, 1366-1378.
Battas, A., El Gaidoumi, A., Ksakas, A., and Kherbeche, A., (2019), "Adsorption study for the removal of nitrate from water using local clay", The Scientific World Journal, vol?? issue??, 9529618, https:/doi.org/10.1155/2019/9529618.
Bhatnagar, A., and Minocha, A.K., (2006), "Conventional and non-conventional adsorbents for removal of pollutants from water, A review", Indian Journal of Chemical Technology, 13, 203-217.
de Lima, A.C.A., Nascimento, R.F., de Sousa, F.F., Filho, J.M., and Oliveira, A.C., (2012), "Modified coconut shell fibers: a green and economical sorbent for the removal of anions from aqueous solutions", Chemical Engineering Journal, 185-186, 274-284, https:/doi.org/10.1016/j.cej.2012.01.037.
Elyanow, D., and Persechino, J., (2021), "Advances in nitrate removal", Available online: https://www.gewater.com/kcpguest/documents/TechnicalPapers_Cust/Americas/English/TP1033EN.pdf (accessed on 15 June 2021).
Hekmatzadeh, A.A., Karimi-Jashni, A., Talebbeydokhti, N., and Kløve, B., (2013), "Adsorption kinetics of nitrate ions on ion exchange resin”, Desalination, 326, 125-134, https:/doi.org/10.1016/j.desal.2013.07.017.
Horsfall, M., Abia, A.A., and Spiff, A.I., (2006), "Kinetic studies on the adsorption of Cd2+, Cu2+ and Zn2+ ions from aqueous solutions by cassava (Manihot sculenta Cranz) tuber bark waste", Bioresource Technology, 97, 283-291, https://doi.org/10.1016/j.biortech.2005.02.016.
Katal, R., Baei, M.S., Rahmati, H.T., and Esfandian, H., (2012), "Kinetic, isotherm and thermodynamic study of nitrate adsorption from aqueous solution using modified rice husk", Journal of Industrial and Engineering Chemistry, 18, 295-302, https:/doi.org/10.1016/j.jiec.2011.11.035.
Katheresan, V., Kansedo, J., Lau, S., (2018), "Efficiency of various recent wastewater dye removal methods: A review", Journal of Environmental Chemical Engineering, 6, 4676-4697, https:/doi.org/10.1016/j.jece.2018.06.060.
Keräanen, A., Leiviskäa, T., Hormi, O., and Tanskanen, J., (2015), "Removal of nitrate by modified pine sawdust: Effects of temperature and co-existing anions", Journal of Environmental Management, 147, 46-54.
Lee, J.E., Park, and Y.-K., (2020), "Applications of modified biochar-based materials for the removal of environment pollutants: A mini review", Sustainability, 12, 6112.
Naushad, M., Ahamad, T., Al-Maswari, B.M., Abdullah Alqadami, A., and Alshehri, S.M., (2017), "Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium", Chemical Engineering Journal, 330, 1351-1360, https:/doi.org/10.1016/j.cej.2017.08.079.
Nodeh, H.R., Sereshti, H., Afsharian, E.Z., and Nouri, N., (2017), Enhanced removal of phosphate and nitrate ions from aqueous media using nanosized lanthanum hydrous doped on magnetic graphene nanocomposite", Journal of Environmental Management, 197, 265-274, https:/doi.org/10.1016/j.jenvman.2017.04.004.
Pintar, A., Batista, J., and Levec, J., (2001), "Catalytic denitrification: Direct and indirect removal of nitrates from potable water", Catalysis Today, 66, 503-510, https:/doi.org/10.1016/S0920-5861(00)00622-2.
Reddy, K.J., and Lin, J., (2000), "Nitrate removal from groundwater using catalytic reduction", Water Research, 34, 995-1001, https:/doi.org/10.1016/S0043-1354(99)00227-4.
Schoeman, J.J., and Steyn, A., (2003), "Nitrate removal with reverse osmosis in a rural area in South Africa", Desalination, 155, 15-26.
  Stjepanović, M., Velić, N., and Habuda-Stanić, M., (2022), "Modified hazelnut shells as a novel adsorbent for the removal of nitrate from wastewater", Water, 14(5), 816.
Stjepanović, M., Velić, N., Lončarić, A., Gašo-Sokač, D., Bušić, V., and Habuda-Stanić, M., (2019), "Adsorptive removal of nitrate from wastewater using modified lignocellulosic waste material", Journal of Molecular Liquids, 285, 535-544.
Wang, Z., Guo, H., Shen, F., Yang, G., Zhang, Y., Zeng, Y., Wang, L., Xiao, H., and Deng, S., (2015), "Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3), and phosphate (PO43−)", Chemosphere, 119, 646-653.
Wang, H., Ho, L., Lewis, D.M., Brookes, J.D., and Newcombe, G., (2007), "Discriminating and assessing adsorption and biodegradation removal mechanisms during granular activated carbon filtration of microcystin toxins", Water Research, 41(18), 4262-4270.
Wahab, M.A., Jellali, S., and Jedidi, N., (2010), "Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling", Bioresource Technology, 101, 5070-5075, https:/doi.org/10.1016/j.biortech.2010.01.121.
Wang, C., Tan, H., Liu, H., Wu, B., Xu, F., and Xu, H., (2019), "A nanoscale ferroferric oxide coated biochar derived from mushroom waste to rapidly remove Cr(VI) and mechanism study", Bioresource Technology Reports, 7, 100253, https:/doi.org/10.1016/j.biteb.2019.100253.
Xue, L., Gao, B., Wan, Y., Fang, J., Wang, S., Li, Y., Muñoz-Carpena, R., and Yang, L., (2016), "High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions", Journal of the Taiwan Institute of Chemical Engineers, 63, 312-317, https:/doi.org/10.1016/j.jtice.2016.03.021.
Xu, X., Gao, B.-Y., Yue, Q.-Y., and Zhong, Q.-Q., (2010), "Preparation of agricultural byproduct based anion exchanger and its utilization for nitrate and phosphate removal", Bioresource Technology, 101, 8558-8564, https:/doi.org/10.1016/j.biortech.2010.06.060.
Yin, Q., Wang, R., and Zhao, Z., (2018), "Application of Mg–Al-modified biochar for simultaneous removal of ammonium, nitrate, and phosphate from eutrophic water", Journal of Cleaner Production, 176, 230-240, https:/doi.org/10.1016/j.jclepro.2017.12.117.