مروری برکاربردهای جاذب‎ها برای حذف ترکیبات فنولی از پساب

نوع مقاله : مقاله مروری

نویسندگان

1 هیات علمی دانشگاه آزاد اسلامی واحد کرمانشاه

2 باشگاه پژوهشگران جوان و نخبگان، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران

3 دانشگاه آزاد اسلامی واحد کرمانشاه گروه شیمی

چکیده

افزایش جمعیت و گسترش صنایع و پیشرفت تکنولوژی عواملی هستند که باعث افزایش مصرف آب و تولید فاضلاب و آلودگی محیط‎زیست شده­اند و سرمایه­گذاری برای تصفیه و دفع بهداشتی را اجباری نموده­اند. فنول­ها ترکیات آلی هستند که توجه بسیاری را به‎دلیل سمی بودن حتی در غلظت­های پایین به‎سمت خود جلب کرده­اند. غلظت مشتقات فنول در پساب خروجی هنگام تخلیه حدود  1/0 است و سازمان سلامت جهانی حداکثر سطح آن را در آب قابل شرب 1 مجاز می‎داند. فنول و ترکیبات فنولی موادی هستند که در بیشتر پساب­های صنعتی و خانگی وجود دارند و به‎علت سمی­بودن ­باید به‎طور مؤثری از این پساب­ها حذف شوند. در این مقاله روش حذف فنول از پساب به‎وسیله جاذب­های کم­هزینه بررسی می‎شود. تأثیر پارامترهای مختلف مثل غلظت اولیه فنول، pH، دما و مقدار جاذب بر روی مقدار جذب بررسی می‎شود. بررسی­ها نشان می­دهد جاذب­های کمهزینه­ای مثل جاذب­های به‎دست آمده از مواد معدنی، پسماند کشاورزی و مواد زائد صنعتی پتانسیل بالا و انعطاف‎پذیری بیشتری را نسبت به بسیاری از روش­های دیگر برای حذف ترکیبات فنولی دارد و جاذب­هایی که فعالیت سطحی بیشتر، سطح و تخلخل بالایی دارند کارایی بیشتری دارند.

کلیدواژه‌ها


 
Abdel-Ghani, N.T., El-Chaghaby, G.A., and Helal, F.S. (2015)., "Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes", Journal of Advanced Research, 6(3), 405-415.
Abdelkreem, M., (2013), "Adsorption of phenol from industrial wastewater using olive mill waste", APCBEE Procedia, 5, 349-357.
Agarwal, B., Balomajumder, C., and Thakur, P.K., (2013), "Simultaneous co-adsorptive removal of phenol and cyanide from binary solution using granular activated carbon", Chemical Engineering Journal, 228, 655-664.
Ahmad, A.L., Loh, M.M., and Aziz, J.A., (2007), "Preparation and characterization of activated carbon from oil palm wood and its evaluation on Methylene blue adsorption", Dyes and Pigments, 75(2), 263-272.
Ahmaruzzaman, M. (2008), "Adsorption of phenolic compounds on low-cost adsorbents: A review", Advances in Colloid and Interface Science, 143(1-2), 48-67.
Ahmaruzzaman, M. and Gayatri, S.L., (2010a), "Activated tea waste as a potential low-cost adsorbent for the removal of p-nitrophenol from wastewater", Journal of Chemical and Engineering Data, 55(11), 4614-4623.
Ahmaruzzaman, M., and Gayatri, S.L., (2010b), "Adsorptive removal of p-Nitrophenol (p-NP) on charred jute stick", International Journal of Chemical Reactor Engineering, 8(1), 1-20.
Ahmaruzzaman, M., and Gayatri, S.L., (2010c), "Batch adsorption of 4-nitrophenol by acid activated jute stick char: equilibrium, kinetic and thermodynamic studies", Chemical Engineering Journal, 158(2), 173-180.
Ahmaruzzaman, M., and Gayatri, S.L., (2011), "Activated neem leaf: A novel adsorbent for the removal of phenol, 4-Nitrophenol, and 4-Chlorophenol from aqueous solutions", Journal of Chemical and Engineering Data, 56(7), 3004-3016.
Ahmaruzzaman, M., and Sharma, D.K., (2005), "Adsorption of phenols from wastewater", Journal of Colloid and Interface Science, 287(1), 14-24.
Akbal, F., and Onar, A.N., (2003). "Photocatalytic degradation of phenol", Environmental Monitoring and Assessment, 83(3), 295-302.
Akhlaghian, F., Ghadermazi, M., and Chenarani, B., (2014), "Removal of phenolic compounds by adsorption on nano structured aluminosilicates", Journal of Environmental Chemical Engineering, 2(1), 543-549.
Aksu, Z., and Yener, J., (1999). "The usage of dried activated sludge and fly ash wastes in phenol biosorption/adsorption: Comparison with granular activated carbon", Journal of Environmental Science and Health, Part A, 34(9), 1777-1796.
Balarak, D., Bazrafshan, E., and Kord Mostafapour, F., (2015), "Application of agricultural waste for adsorption bisphenol A from aqueous solution: Kinetic and equilibrium studies", Journal of Environmental Health Engineering, 3(1), 29-41.
Balarak, D ,.Kord Mostafapour, F., and Mahdavi, Y., (2016), "A Survey on adsorption of phenol from aqueous solutions by sorghum and canola and determination of adsorption isotherms and kinetics", Journal of Rafsanjan University of Medical Sciences, 15(8), 793-806.
Banat, F.A., and Al-Asheh, S., (1999), “Biosorption of phenol by chicken feathers”, Environmental Engineering and Policy, 2(2), 85-90.
Belhouchat, N., Zaghouane-Boudiaf, H., and Viseras, C., (2017), "Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads", Applied Clay Science, 135, 9-15.
Bhattacharyya, K.G., and Sarma, A., (2003), "Adsorption characteristics of the dye, brilliant green, on neem leaf powder", Dyes and Pigments, 57(3), 211-222.
Bogan, B.W., and Sullivan, W.R., (2003), "Physicochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil", Chemosphere, 52(10), 1717-1726.
Cañizares, P., Sáez, C., Lobato, J., and Rodrigo, M.A., (2004), "Electrochemical treatment of 2,4-dinitrophenol aqueous wastes using boron-doped diamond anodes", Electrochimica Acta, 49(26), 4641-4650.
Carrasco-Marín, F., Alvarez-Merino, M.A., and Moreno-Castilla, C., (1996), "Microporous activated carbons from a bituminous coal", Fuel, 75(8), 966-970.
Chen, C., Geng, X., and Huang, W., (2017), "Adsorption of 4-chlorophenol and aniline by nanosized activated carbons", Chemical Engineering Journal, 327, 941-952.
Damjanović, L., Rakić, V., Rac, V., Stošić, D., and Auroux, A., (2010), "The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents", Journal of Hazardous Materials, 184(1), 477-484.
Denizli, A., Cihangir, N., Rad, A.Y., Taner, M., and Alsancak, G., (2004), "Removal of chlorophenols from synthetic solutions using Phanerochaete chrysosporium", Process Biochemistry, 39(12), 2025-2030.
Dutta, S., Basu, J.K., and Ghar, R.N., (2001). "Studies on adsorption of p-nitrophenol on charred saw-dust", Separation and Purification Technology, 21(3), 227-235.
Ebrahim, S.E., (2013), "Modeling the removal of phenol by natural zeolitein batch and continuous adsorption systems", Journal of Babylon University/Engineering Sciences, 21(1), 249-263.
El-Naas, M.H., Al-Zuhair, S., and Alhaija, M.A., (2010), "Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon", Chemical Engineering Journal, 162(3), 997-1005.
Feng, J., Qiao, K., Pei, L., Lv, J., and Xie, S., (2015), "Using activated carbon prepared from Typha orientalis Presl to remove phenol from aqueous solutions", Ecological Engineering, 84, 209-217.
Fu, Y., Shen, Y., Zhang, Z., Ge, X., and Chen, M., (2019), "Activated bio-chars derived from rice husk via one-and two-step KOH-catalyzed pyrolysis for phenol adsorption"و Science of The Total Environment, 646, 1567-1577.
García-Peña, E.I., Zarate-Segura, P., Guerra-Blanco, P., Poznyak, T., and Chairez, I., (2012), "Enhanced phenol and chlorinated phenols removal by combining ozonation and biodegradation", Water, Air and Soil Pollution, 223(7), 4047-4064.
Gayatri, S.L., and Ahmaruzzaman, M., (2010), "Adsorption technique for the removal of phenolic compounds from wastewater using low-cost natural adsorbents", Assam University Journal of Science and Technology, 5(2), 156-166.
Gayatri, S.L., and Ahmaruzzaman, M., (2014), "Development of adsorbent from solid waste of potato peel for decontamination of wastewater containing 4-Nitrophenol", Journal of International Academy of Physical Sciences,  16(4), 407-420.
Giraldo, L., and Moreno-Piraján, J.C., (2014), "Study of adsorption of phenol on activated carbons obtained from eggshells", Journal of Analytical and Applied Pyrolysis, 106, 41-47.
Girish, C., and Murty, V.R., (2015), "Adsorption of phenol from aqueous solution using lantana camara, forest waste: packed bed studies and prediction of breakthrough curves", Environmental Processes, 2(4), 773-796.
Girish, C., Singh, P., and Goyal, A.K., (2017), "Removal of phenol from wastewater using tea waste and optimization of conditions using response surface methodology", International Journal of Applied Engineering Research, 12(13), 3857-3863.
Godini, H., Taheri, F., Kamarehie, B., Mostafaei, P., and Saeedi, S., (2015), Removal of p-chloro phenol from aqueous solutions using chestnut shell modified by sulfuric acid: Study of adsorption kinetic and isotherm, Journal of Environmental Health Enginering, 2(4), 319-331.
Godjevargova, T., Ivanova, D., Aleksieva, Z., and Burdelova, G., (2006), "Biodegradation of phenol by immobilized Trichosporon cutaneum R57 on modified polymer membranes", Process Biochemistry, 41(11), 2342-2346.
Gokce, Y., and Aktas, Z., (2014), "Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol", Applied Surface Science, 313, 352-359.
Greminger, D.C., Burns, G.P., Lynn, S., Hanson, D.N., and King, C.J., (1982), "Solvent extraction of phenols from water", Industrial and Engineering Chemistry Process Design and Development, 21(1), 51-54.
Gupta, A., and Balomajumder, C., (2015), "Simultaneous removal of Cr(VI) and phenol from binary solution using Bacillus sp. immobilized onto tea waste biomass", Journal of Water Process Engineering, 6, 1-10.
Gupta, V.K., Sharma, S., Yadav, I.S., and Mohan, D., (1998), "Utilization of bagasse fly ash generated in the sugar industry for the removal and recovery of phenol and p-nitrophenol from wastewater", Journal of Chemical Technology and Biotechnology, 71(2), 180-186.
Gupta, V.K., Gupta, B., Rastogi, A., Agarwal, S., and Nayak, A., (2011), “A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye, Acid Blue 113”, Journal of Hazardous Materials, 186(1), 891-901.
Hameed, B., (2007). "Equilibrium and kinetics studies of 2, 4, 6-trichlorophenol adsorption onto activated clay", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 307(1-3), 45-52.
Hameed, B., Tan, I., and Ahmad, A., (2008). "Adsorption isotherm, kinetic modeling and mechanism of 2, 4, 6-trichlorophenol on coconut husk-based activated carbon", Chemical Engineering Journal, 144(2), 235-244.
Hoigné, J., (1988), The chemistry of ozone in water, In: Process Technologies for Water Treatment, Springer US, Boston, MA, pp. 121-141.
Ingole, R.S., Lataye, D.H., and Dhorabe, P.T., (2017) “Adsorption of phenol onto banana peels activated carbon”, KSCE Journal of Civil Engineering, 21(1), 100-110.
Jadhav, A.J., and Srivastava, V.C., (2003), "Adsorbed solution theory based modeling of binary adsorption of nitrobenzene, aniline and phenol onto granulated activated carbon", Chemical Engineering Journal, 229, 450-459.
Jadhav, D., and Vanjara, A., (2004), "Removal of phenol from wastewater using sawdust, polymerized sawdust and sawdust carbon",  11, 35-41.
Jain, S., and Jayaram, R.V., (2007), "Adsorption of phenol and substituted chlorophenols from aqueous solution by activated carbon prepared from jackfruit (Artocarpus heterophyllus) peel‐kinetics and equilibrium studies", Separation Science and Technology, 42(9), 2019-2032.
Jung, M.W., Ahn, K.H., Lee, Y., Kim, K.P., Rhee, J.S., Park, J.T., and Paeng, K.J., (2001), “Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC)”, Microchemical Journal, 70(2), 123-131.
Kaleta, J., (2006), "Removal of phenol from aqueous solution by adsorption", Canadian Journal of Civil Engineering, 33(5), 546-551.
Kamari, M., Shafiee, S., Salimi, F., and Karami, C., (2011), "Comparison of modified boehmite nanoplatelets and nanowires for dye removal from aqueous solution", Desalination and Water Treatment, 161, 304-314.
Karaca, S., Guerses, A., and Bayrak, R., (2004), "Effect of some pre-treatments on the adsorption of methylene blue by Balkaya lignite", Energy Conversion and Management, 45(11-12), 1693-1704.
Karunarathne, H.D.S.S., and Amarasinghe, B.M.W.P.K., (2013), "Fixed bed adsorption column studies for the removal of aqueous phenol from activated carbon prepared from sugarcane bagasse", Energy Procedia, 34, 83-90.
Khalid, M., Joly, G., Renaud, A., and Magnoux, P., (2004), "Removal of phenol from water by adsorption using zeolites", Industrial and Engineering Chemistry Research, 43(17), 5275-5280.
Kuleyin, A., (2007), "Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite", Journal of hazardous materials, 144(1), 307-315.
Kulkarni, S.J., and Kaware, J., (2014), "Removal of phenol from effluent in fixed bed: a review", International Journal of Engineering Research and General Science, 2(5), 35-38.
Kulkarni, S.J., Tapre, R.W., Patil, S.V., and Sawarkar, M.B., (2013). "Adsorption of phenol from wastewater in fluidized bed using coconut shell activated carbon", Procedia Engineering, 51, 300-307.
Kumar, A., and Jena, H.M., (2016), "Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column", Journal of Cleaner Production, 137, 1246-1259.
Kwon, K.H., and Yeom, S.H., (2009), "Optimal microbial adaptation routes for the rapid degradation of high concentration of phenol", Bioprocess and Biosystems Engineering, 32(4), 435-442.
Langlais, B., Reckhow, D.A., and Brink, D.R., (1991). Ozone in water treatment: application and engineering, CRC press.
Laszlo, K., Podkościelny, P., and Dabrowski, A., (2003). "Heterogeneity of polymer-based active carbons in adsorption of aqueous solutions of phenol and 2, 3, 4-trichlorophenol", Langmuir, 19(13), 5287-5294.
Mahvi, A., Maleki, A., and Eslami, A., (2004), "Potential of rice husk and rice husk ash for phenol removal in aqueous systems", American Journal of Applied Sciences, 1, 321-326.
Mattson, J.S., Lee, L., Mark, H.B., and Weber, W.J., (1970), "Surface oxides of activated carbon: Internal reflectance spectroscopic examination of activated sugar carbons", Journal of Colloid and Interface Science, 33(2), 284-293.
Mirmohamadsadeghi, S., Kaghazchi, T., Soleimani, M., and Asasian, N., (2012), "An efficient method for clay modification and its application for phenol removal from wastewater", Applied Clay Science, 59, 8-12.
Mohammadi, S., Kargari, A., Sanaeepur, H., Abbassian, K., Najafi, A., and Mofarrah, E., (2015), "Phenol removal from industrial wastewaters: a short review", Desalination and Water Treatment, 53(8), 2215-2234.
Mukherjee, S., Kumar, S., Misra, A.K., and Fan, M., (2007), "Removal of phenols from water environment by activated carbon, bagasse ash and wood charcoal", Chemical Engineering Journal, 129(1), 133-142.
Namane, A., Mekarzia, A., Benrachedi, K., Belhaneche-Bensemra, N., and Hellal, A., (2005), "Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4", Journal of Hazardous Materials, 119(1-3), 189-194.
Nandi, B., Goswami, A., and Purkait, M., (2009), "Removal of cationic dyes from aqueous solutions by kaolin: kinetic and equilibrium studies", Applied Clay Science, 42(3), 583-590.
Nowack, K.O., Cannon, F.S., and Arora, H., (1999), "Ferric chloride plus GAC for removing TOC", Journal of American Water Works Association, 91(2), 65-78.
Otero, M., Zabkova, M., and Rodrigues, A.E., (2005), "Adsorptive purification of phenol wastewaters: experimental basis and operation of a parametric pumping unit", Chemical Engineering Journal, 110(1-3), 101-111.
Patnukao, P., and Pavasant, P., (2008), "Activated carbon from Eucalyptus camaldulensis Dehn bark using phosphoric acid activation", Bioresource Technology, 99(17), 8540-8543.
Pimentel, P., Melo, M., Melo, D., Assuncao, A., Henrique, D., Silva, C., and Gonzalez, G., (2008), "Kinetics and thermodynamics of Cu (II) adsorption on oil shale wastes", Fuel processing Technology, 89(1), 62-67.
Quintelas, C., Sousa, E., Silva, F., Neto, S., and Tavares, T., (2006), "Competitive biosorption of ortho-cresol, phenol, chlorophenol and chromium (VI) from aqueous solution by a bacterial biofilm supported on granular activated carbon", Process Biochemistry, 41(9), 2087-2091.
Rad, L. R., Haririan, I., and Divsar, F., (2015), "Comparison of adsorption and photo-Fenton processes for phenol and paracetamol removing from aqueous solutions: Single and binary systems", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 423-428.
Rajput, S., Singh, L.P., Pittman Jr, C.U., and Mohan, D., (2017), "Lead (Pb2+) and copper (Cu2+) remediation from water using superparamagnetic maghemite (γ-Fe2O3) nanoparticles synthesized by Flame Spray Pyrolysis (FSP)", Journal of Colloid and Interface Science, 492, 176-190.
Ranade, V.V., and Bhandari, V.M., (2014a), Industrial wastewater treatment, recycling and reuse, Butterworth-Heinemann.
Ranade, V.V., and Bhandari, V.M., (2014b), "Industrial wastewater treatment, recycling, and reuse: An overview", In: Industrial Wastewater Treatment, Recycling and Reuse, Butterworth-Heinemann, Oxford, pp. 1-80.
Rezaiati, M., Salimi, F., and Karami, C., (2017), "Determination of trace amounts of chromium ions in water and food samples using ligand-less solid phase extraction-based modified nano-boehmite (AlOOH)", Iranian Chemical Communication, 5, 397-406.
Robinson, T., McMullan, G., Marchant, R., and Nigam, P., (2001), "Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative", Bioresource technology, 77(3), 247-255.
Roostaei, N., and Tezel, F.H., (2004), "Removal of phenol from aqueous solutions by adsorption". Journal of Environmental Management, 70(2), 157-164.
Salimi, F., Emami, S.S., and Karami, C., (2018), "Removal of methylene blue from water solution by modified nano-boehmite with Bismuth", Inorganic and Nano-Metal Chemistry, 48(1), 31-40.
Salimi, F., Tahmasobi, K., Karami, C., and Jahangiri, A., (2017), "Preparation of Modified nano-SiO2 by Bismuth and Iron as a novel Remover of Methylene Blue from Water Solution", Journal of the Mexican Chemical Society, 61(3), 250-259.
Salimia, F., Eskandaria, M., and Karamib, C., (2017), "Investiga tion of methylene blue adsorption in wastewater using nano-zeolite modified with copper", Desalination and Water Treatment, 85, 206-214.
Saltalı, K., Sarı, A., and Aydın, M., (2007), "Removal of ammonium ion from aqueous solution by natural Turkish (Yıldızeli) zeolite for environmental quality", Journal of Hazardous Materials, 141(1), 258-263.
Sarker, N., and Fakhruddin, A.N.M., (2017), "Removal of phenol from aqueous solution using rice straw as adsorbent", Applied Water Science, 7(3), 1459-1465.
Sartape, A.S., Mandhare, A.M., Jadhav, V.V., Raut, P.D., Anuse, M.A., and Kolekar, S.S., (2017), "Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent", Arabian Journal of Chemistry, 10, S3229-S3238.
Shen, S., Chang, Z., and Liu, H., (2006), "Three-liquid-phase extraction systems for separation of phenol and p-nitrophenol from wastewater", Separation and Purification Technology, 49(3), 217-222.
Shukla, A., Zhang, Y.-H., Dubey, P., Margrave, J.L., and Shukla, S.S., (2002), "The role of sawdust in the removal of unwanted materials from water", Journal of hazardous materials, 95(1), 137-1352.
Sorokhaibam, L.G., and Ahmaruzzaman, M., (2014), "Chapter 8 - phenolic wastewater treatment: Development and applications of new adsorbent materials", In: Industrial Wastewater Treatment, Recycling and Reuse Ranade, V.V., and Bhandari, V.M. (eds), Butterworth-Heinemann, Oxford, pp. 323-368.
Srivastava, V.C., Mall, I.D., and Mishra, I.M., (2008), "Antagonistic competitive equilibrium modeling for the adsorption of ternary metal ion mixtures from aqueous solution onto bagasse fly ash", Industrial and Engineering Chemistry Research, 47(9), 3129-3137.
Srivastava, V.C., Mall, I.D., and Mishra, I.M., (2009), "Competitive adsorption of cadmium (II) and nickel (II) metal ions from aqueous solution onto rice husk ash", Chemical Engineering and Processing: Process Intensification, 48(1), 370-379.
Staehelin, J., Buehler, R., and Hoigné, J., (1984), "Ozone decomposition in water studied by pulse radiolysis. 2. Hydroxyl and hydrogen tetroxide (HO4) as chain intermediates", The Journal of Physical Chemistry, 88(24), 5999-6004.
Su, F., Lv, L., Hui, T.M., and Zhao, X.S., (2005), "Phenol adsorption on zeolite-templated carbons with different structural and surface properties", Carbon, 43(6), 1156-1164.
Sulaymon, A.H., Abbood, D.W., and Ali, A.H., (2012), "Removal of phenol and lead from synthetic wastewater by adsorption onto granular activated carbon in fixed bed adsorbers: prediction of breakthrough curves", Desalination and Water Treatment, 40(1-3), 244-253.
Sulaymon, A.H., Mohammed, A.A., and Al-Musawi, T.J., (2013). "Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae", Environmental Science and Pollution Research, 20(5), 3011-3023.
Taha, M.R., Leng, T., Mohamad, A.B., and Kadhum, A.A.H., (2003), "Batch adsorption tests of phenol in soils", Bulletin of Engineering Geology and the Environment, 62(3), 251-257.
Tan, I., Ahmad, A., and Hameed, B., (2009), "Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon", Journal of Hazardous Materials, 164(2-3), 473-482.
Tang, W., Huang, H., Gao, Y., Liu, X., Yang, X., Ni, H., and Zhang, J., (2015), "Preparation of a novel porous adsorption material from coal slag and its adsorption properties of phenol from aqueous solution", Materials and Design, 88, 1191-1200.
Teng, H., Yeh, T.-S., and Hsu, L.-Y., (1998). "Preparation of activated carbon from bituminous coal with phosphoric acid activation", Carbon, 36(9), 1387-1395.
Terzyk, A.P., (2003), "Further insights into the role of carbon surface functionalities in the mechanism of phenol adsorption", Journal of Colloid and Interface Science, 268(2), 301-329.
Thakur, C., Mall, I., and Srivastava, V., (2014), "Competitive adsorption of phenol and resorcinol onto rice husk ash", Theoretical Foundations of Chemical Engineering, 48(1), 60-70.
United States Environmental Protection Agency (USEPA), (1985), Technical support document for water quality-based toxics control, Office of Water Enforcement and Permits, Office of Water Regulations and Standards, US Environmental Protection Agency.
Valderrama, C., Barios, J.I., Caetano, M., Farran, A., and Cortina, J.L., (2010). "Kinetic evaluation of phenol/aniline mixtures adsorption from aqueous solutions onto activated carbon and hypercrosslinked polymeric resin (MN200)", Reactive and Functional Polymers, 70(3), 142-150.
Varghese, S., Vinod, V., and Anirudhan, T., (2004). "Kinetic and equilibrium characterization of phenols adsorption onto a novel activated carbon in water treatment", 11, 825-833.
Venkatesan, S., ul Hassan, M., and Ryu, H.J., (2019), "Adsorption and immobilization of radioactive ionic-corrosion-products using magnetic hydroxyapatite and cold-sintering for nuclear waste management applications", Journal of Nuclear Materials, 514, 40-49.
Wang, R.C., Kuo, C.C., and Shyu, C.C., (1997), "Adsorption of phenols onto granular activated carbon in a liquid-solid fluidized bed", Journal of Chemical Technology and Biotechnology: International Research in Process, Environmental and Clean Technology, 68(2), 187-194.
Wu, F.-C., Tseng, R.-L., and Juang, R.-S., (2005), "Preparation of highly microporous carbons from fir wood by KOH activation for adsorption of dyes and phenols from water". Separation and Purification Technology, 47(1), 10-19.
Yang, G., Chen, H., Qin, H., and Feng, Y., (2014), "Amination of activated carbon for enhancing phenol adsorption: effect of nitrogen-containing functional groups", Applied Surface Science, 293, 299-305.
Yang, K., Wu, W., Jing, Q., and Zhu, L., (2008), "Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes", Environmental Science and Technology, 42(21), 7931-7936.
Yi, S., Zhuang, W.-Q., Wu, B., Tay, S.T.-L., and Tay, J.-H., (2006), "Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor", Environmental Science and Technology, 40(7), 2396-2401.
Zhang, Y., Mancke, R. G., Sabelfeld, M., and Geißen, S.-U., (2014). "Adsorption of trichlorophenol on zeolite and adsorbent regeneration with ozone", Journal of hazardous materials, 271, 178-184.
Zhang, Z., Feng, X., Yue, X.-X., An, F.-Q., Zhou, W.-X., Gao, J.-F., Hu, T.-P., and Wei, C.-C., (2015), "Effective adsorption of phenols using nitrogen-containing porous activated carbon prepared from sunflower plates", Korean Journal of Chemical Engineering, 32(8), 1564-1569.