بررسی کارایی پردازش کربنیزاسیون گرمابی بر تولید بیوگاز ناشی از هضم بی‎هوازی مواد آلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، مهندسی محیط‎زیست، دانشکده محیط‎زیست، دانشگاه تهران، تهران، ایران.

2 استاد، گروه مهندسی محیط‎زیست، دانشکده محیط‎زیست، دانشگاه تهران، تهران، ایران.

3 استاد، گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، تهران، ایران.

4 استادیار، گروه مهندسی محیط‎زیست، دانشکده محیط‎زیست، دانشگاه تهران، تهران، ایران.

چکیده

بیشترین مشکلات در زمینه مدیریت پسماند شهری مربوط به بخش آلی پسماندهای شهری است. در این پژوهش که به‎صورت تجربی انجام شد، اثر هیدروچارهای تولیدی در دماهای 150، 190 و 230 درجه سانتی‎گراد بر فرایند هضم بی‎هوازی با نمونه بخش آلی پسماندهای شهری تهران بررسی شد. بر اثر فرآیند کربنیزاسیون گرمابی، با افزایش دما، میزان بازدهی هیدروچار کاهش یافت و در عین‎حال با توجه به افزایش ارزش حرارتی، میزان بازدهی انرژی در هیدورچار-190 به بیشینه حالت خود رسید. اثرگذاری هیدروچار بر میزان تولید بیوگاز متغیر بود و در هیدروچارهای 150 و 190 به‎ترتیب 25/23 و 03/41 درصد افزایش تولید بیوگاز مشاهده شد که ناشی از تخریب ساختار سخت بخش آلی پسماندهای شهری بود. از طرفی در هیدروچار-230، 63/30 درصد کاهش تولید بیوگاز رخ داد که ناشی از تولید محصولات بازدارنده مانند فنول و فورفورال در فرایند کربنیزاسیون گرمابی بود. با توجه به نتایج حاصل شده، بهترین شرایط به‎منظور تولید بیشینه بیوگاز در هیدروچار تولیدی در دمای 190 درجه سانتی‎گراد و زمان ماند 40 دقیقه بود. هم‎چنین درصد تولید متان در این شرایط معادل 25/63 درصد بود.

کلیدواژه‌ها


 
Abudi, Z.N., Hu, Z., Sun, N., Xiao, B., Rajaa, N., Liu, C., and Guo, D., (2016), “Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): Influence of TWAS and RS pretreatment and mixing ratio”, Energy, 107, 131-140.
Aragón-Briceño, C., Ross, A.B., and Camargo-Valero, M.A., (2017), “Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment”, Applied energy, 208, 1357-1369.
ASTM E1621-21, (2021), Standard guide for elemental analysis by wavelength dispersive x-ray fluorescence spectrometry, ASTM International, West Conshohocken, PA.
Babu, R., Veramendi, P.M.P., and Rene, E.R., (2021), “Strategies for resource recovery from the organic fraction of municipal solid waste”, Case Studies in Chemical and Environmental Engineering, 3, 100098.
Basso, D., Patuzzi, F., Castello, D., Baratieri, M., Rada, E.C., Weiss-Hortala, E., and Fiori, L., (2016), “Agro-industrial waste to solid biofuel through hydrothermal carbonization”, Waste Management, 47, 114-121.
Basso, D., Weiss-Hortala, E., Patuzzi, F., Castello, D., Baratieri, M., and Fiori, L., (2015), “Hydrothermal carbonization of off-specification compost: A byproduct of the organic municipal solid waste treatment”, Bioresource Technology, 182, 217-224.
Bolzonella, D., Pavan, P., Mace, S., and Cecchi, F., (2006), “Dry anaerobic digestion of differently sorted organic municipal solid waste: A full-scale experience”, Water Science and Technology, 53(8), 23-32.
Benavente, V., Calabuig, E., and Fullana, A., (2015), “Upgrading of moist agro-industrial wastes by hydrothermal carbonization”, Journal of Analytical and Applied Pyrolysis, 113, 89-98.
Cesaro, A., and Belgiorno, V., (2014), “Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions”, Chemical Engineering Journal, 240, 24-37.
Cesaro, A., Belgiorno, V., Siciliano, A., and Guida, M., (2019), “The sustainable recovery of the organic fraction of municipal solid waste by integrated ozonation and anaerobic digestion”, Resources, Conservation and Recycling, 141, 390-397.
Choe, U., Mustafa, A.M., Lin, H., Xu, J., and Sheng, K., (2019), “Effect of bamboo hydrochar on anaerobic digestion of fish processing waste for biogas production”, Bioresource Technology, 283, 340-349.
Choe, U., Mustafa, A.M., Zhang, X., Sheng, K., Zhou, X., and Wang, K., (2021), “Effects of hydrothermal pretreatment and bamboo hydrochar addition on anaerobic digestion of tofu residue for biogas production”, Bioresource Technology, 336, 125279.
Coronella, C.J., Lynam, J.G., Reza, M.T., and Uddin, M.H., (2014), “Hydrothermal carbonization of lignocellulosic biomass”, Biomass Conversion and Biorefinery, 5(2), 173-181.
Ebrahimian, F., Karimi, K., and Kumar, R., (2020), “Sustainable biofuels and bioplastic production from the organic fraction of municipal solid waste”, Waste Management, 116, 40-48.
Federation, W.E., and APH Association., (2005), “Standard methods for the examination of water and wastewater”, American Public Health Association (APHA), Washington, DC, USA.
Ferrari, F., Striani, R., Minosi, S., De Fazio, R., Visconti, P., Patrono, L., Catarinucci, L., Corcione, C.E. and Greco, A., (2020), “An innovative IoT-oriented prototype platform for the management and valorisation of the organic fraction of municipal solid waste”, Journal of Cleaner Production, 247,119618.
Funke, A., and Ziegler, F., (2011), “Heat of reaction measurements for hydrothermal carbonization of biomass”, Bioresource Technology, 102(16), 7595-7598.
Hansen, T. L., Schmidt, J.E., Angelidaki, I., Marca, E., la Cour Jansen, J., Mosbæk, H., and Christensen, T.H., (2004), “Method for determination of methane potentials of solid organic waste”, Waste Management, 24(4), 393-400.
He, C., Chen, C.L., Giannis, A., Yang, Y., and Wang, J.Y., (2014), “Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: a review”, Renewable and Sustainable Energy Reviews, 39, 1127-1142.
Jain, A., Balasubramanian, R., and Srinivasan, M.P., (2016), “Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review”, Chemical Engineering Journal, 283, 789-805.
Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M.M., Fühner, C., Bens, O., Kern, J. and Emmerich, K.H., (2011), “Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis”, Biofuels, 2(1), 71-106.
Li, Y., and Jin, Y., (2015), “Effects of thermal pretreatment on acidification phase during two-phase batch anaerobic digestion of kitchen waste”, Renewable Energy, 77, 550-557.
Liu, Y., Ni, Z., Kong, X., and Liu, J., (2017), “Greenhouse gas emissions from municipal solid waste with a high organic fraction under different management scenarios”, Journal of Cleaner Production, 147, 451-457.
Liu, J., Zhao, M., Lv, C., and Yue, P., (2020), “The effect of microwave pretreatment on anaerobic co-digestion of sludge and food waste: Performance, kinetics and energy recovery”, Environmental Research, 189, 109856.
Mäkelä, M., Benavente, V., and Fullana, A., (2015), “Hydrothermal carbonization of lignocellulosic biomass: Effect of process conditions on hydrochar properties”, Applied Energy, 155, 576-584.
Mustafa, A.M., Li, H., Radwan, A.A., Sheng, K., and Chen, X., (2018), “Effect of hydrothermal and Ca (OH)2 pretreatments on anaerobic digestion of sugarcane bagasse for biogas production”, Bioresource Technology, 259, 54-60.
Pham, T.P.T., Kaushik, R., Parshetti, G.K., Mahmood, R., and Balasubramanian, R., (2015), “Food waste-to-energy conversion technologies: Current status and future directions”, Waste Management, 38, 399-408.
Phuttaro, C., Sawatdeenarunat, C., Surendra, K.C., Boonsawang, P., Chaiprapat, S., and Khanal, S.K., (2019), Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass: Influence of pretreatment temperatures, inhibitors and soluble organics on methane yield”, Bioresource Technology, 284, 128-138.
Rani, R.U., Kumar, S.A., Kaliappan, S., Yeom, I.T., and Banu, J.R., (2012), “Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process”, Bioresource Technology, 103(1), 415-424.
Vergara, S.E., and Tchobanoglous, G., (2012), “Municipal solid waste and the environment: a global perspective”, Annual Review of Environment and Resources, 37, 277-309.
Volpe, M., Goldfarb, J.L., and Fiori, L., (2018), “Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties”, Bioresource Technology, 247, 310-318.
Volpe, M., and Fiori, L., (2017), “From olive waste to solid biofuel through hydrothermal carbonisation: The role of temperature and solid load on secondary char formation and hydrochar energy properties”, Journal of Analytical and Applied Pyrolysis, 124, 63-72.
Wilson, D.C., Rodic, L., Modak, P., Soos, R., Carpintero, A., Velis, K., Iyer, M. and Simonett, O., (2015), Global waste management outlook, UNEP.
Xu, J., Mustafa, A. M., Lin, H., Choe, U. Y., and Sheng, K., (2018), “Effect of hydrochar on anaerobic digestion of dead pig carcass after hydrothermal pretreatment”, Waste Management, 78, 849-856.
Yu, Q., Liu, R., Li, K., and Ma, R., (2019), “A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China”, Renewable and Sustainable Energy Reviews, 107, 51-58.
Zamri, M.F.M.A., Hasmady, S., Akhiar, A., Ideris, F., Shamsuddin, A.H., Mofijur, M., Fattah, I.R., and Mahlia, T.M.I., (2021), “A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste”, Renewable and Sustainable Energy Reviews, 137,110637.
Zeynali, R., Khojastehpour, M., and Ebrahimi-Nik, M., (2017), “Effect of ultrasonic pre-treatment on biogas yield and specific energy in anaerobic digestion of fruit and vegetable wholesale market wastes”, Sustainable Environment Research, 27(6), 259-264.
Zhu, K., Liu, Q., Dang, C., Li, A., and Zhang, L., (2021), “Valorization of hydrothermal carbonization products by anaerobic digestion: Inhibitor identification, biomethanization potential and process intensification”, Bioresource Technology, 341, 125752.