بررسی روش‎های بهبود کیفیت بیوگاز تولیدی در فرآیند هضم بی‎هوازی

نوع مقاله : مقاله مروری

نویسندگان

1 دانشکده مهندسی عمران آب و محیط زیست دانشگاه شهید بهشتی

2 دانشگاه شهید بهشتی

چکیده

تأمین انرژی صنایع مختلف از سوخت‎های فسیلی موجب تولید حجم گسترده‎ای از آلاینده‎ها در جهان شده است؛ به‎همین علت تحقیقات گسترده‎ای برای یافتن منابع انرژی جایگزین صورت گرفته است. استفاده از منابع تجدید‎پذیر به‎علت صرفه‎ی اقتصادی، سهولت در بهره‎برداری و آلودگی محیط‎زیستی پایین از جمله روش‎های نوین تأمین انرژی است. تصفیه‌خانه‎های فاضلاب با بهره‎گیری از تجهیزات هضم بی‌هوازی علاوه‎بر تصفیه‎ فاضلاب و تأمین برخی از مواد اولیه صنایع با تولید بیوگاز سبب تولید انرژی می‌شوند. موتور‎های احتراق با احتراق متان موجود در بیوگاز ناشی از هضم بی‎هوازی سبب تولید انرژی می‌شود. بررسی کیفیت بیوگازهای تولید شده از انواع لجن و پسماند علاوه‎بر تعیین میزان تاثیرگذاری کربوهیدرات‎ها و پروتئین‎های مواد ورودی به سیستم‎های هضم بی‌هوازی در کیفیت بیوگاز خروجی، سبب ایجاد دیدی جامع نسبت به عوامل محیطی مؤثر و نوآوری در طراحی  تجهیزات سیستم‎های هضم بی‌هوازی شده است. روش‎های بهبود دهنده‎ کیفیت بیوگاز را می‌توان در سه دسته پیش‎تصفیه، فرآیند اصلی و پس‎تصفیه تقسیم‎بندی کرد؛ روش‎های فرآیند اصلی به‎علت سهولت در بهره‎برداری، بازده بالا و توجیه اقتصادی نسبت به دو روش دیگر در صنعت کاربرد بیشتری دارند. این مقاله با بررسی عوامل مؤثر و روند‎های مختلف هر مرحله از هضم بی‌هوازی، به معرفی و مقایسه‎ روش‎های مختلف بهبوددهنده‎ بیوگاز می‌پردازد.

کلیدواژه‌ها


 
حیدری، ع.، (1397)، "مدیریت منابع آب و بازچرخانی پساب، راه‎کار تأمین آب شرب مناطق خشک: مطالعه موردی شهر مشهد"، نشریه علوم و مهندسی آب و فاضلاب، ۳(4)، 49-64.
رسولی سعدآباد، ح.، و اختیارزاده، ز.، (1396)، "بررسی امکان تخلیه لجن حاصل از تصفیه‌خانه‌های آب به شبکه فاضلاب و تاثیر آن بر روی فرآیندهای تصفیه‌خانه فاضلاب"، نشریه علوم و مهندسی آب و فاضلاب، 2(4)، 61-63.
Aghbashlo, M., Tabatabaei, M., Hosseini, S.S., Dashti, B.B., and Soufiyan, M.M., (2018), “Performance assessment of a wind power plant using standard exergy and extended exergy accounting (EEA) approaches”, Journal of Cleaner Production, 171, 127-36.
Dererie, D.Y., Trobro, S., Momeni, M.H., Hansson, H., Blomqvist, J., Passoth, V., Schnürer, A., Sandgren, M., and Ståhlberg, J., (2011), “Improved bio-energy yields via sequential ethanol fermentation and biogas digestion of steam exploded oat straw”, Bioresource Technology, 102(6), 4449-4455.
Divya, D., Gopinath, L., and Christy, P.M., (2015), “A review on current aspects and diverse prospects for enhancing biogas production in sustainable means”, Renewable and Sustainable Energy Reviews, 42, 690-699.
Esposito, G., Frunzo, L., Giordano, A., Liotta, F., Panico, A., and Pirozzi, F., (2012), “Anaerobic co-digestion of organic wastes”, Reviews in Environmental Science and Bio/Technology, 11(4), 325-341.
Garcia-Peña, E.I., Nakauma-Gonzalez, A., and Zarate-Segura P., (2012), “Biogas production and cleanup by biofiltration for a potential use as an alternative energy source”, Biogas, Croatia, InTech, 113-134.
Goud, R.K., Sarkar, O., Chiranjeevi, P., and Mohan, S.V., (2014), “Bioaugmentation of potent acidogenic isolates: A strategy for enhancing biohydrogen production at elevated organic load”, Bioresource Technology, 165, 223-232.
Hosseinpour, S., Aghbashlo, M., and Tabatabaei, M., (2018), “Biomass higher heating value (HHV) modeling on the basis of proximate analysis using iterative network-based fuzzy partial least squares coupled with principle component analysis (PCA-INFPLS)”, Fuel, 222, 1-10.
Jo, Y., Kim, J., Hwang, K., and Lee, C., (2018), “A comparative study of single-and two-phase anaerobic digestion of food waste under uncontrolled pH conditions”, Waste Management, 78, 509-520.
Lay, C.-H., Vo, T.-P., Lin, P.-Y. Abdul, P.M., Liu, C.-M. and Lin, C.-Y., (2019), “Anaerobic hydrogen and methane production from low-strength beverage wastewater”, International Journal of Hydrogen Energy, 44(28), 14351-14361.
Maragkaki, A., Fountoulakis, M., Gypakis, A., Kyriakou, A., Lasaridi, K., and Manios, T., (2017), “Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants”, Waste Management, 59, 362-370.
Martin, M., Svensson, N., Fonseca, J., and Eklund, M., (2014), “Quantifying the environmental performance of integrated bioethanol and biogas production”, Renewable Energy, 61, 109-116.
Micolucci, F., Gottardo, M., Pavan, P., Cavinato, C., and Bolzonella, D., (2018), “Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste”, Journal of Cleaner Production, 171, 1376-1385.
Mishra, P., Singh, L., Islam, M.A., Nasrullah, M., Sakinah, A.M., and Ab Wahid, Z., (2019), “NiO and CoO nanoparticles mediated biological hydrogen production: Effect of Ni/Co oxide NPs-ratio”, Bioresource Technology Reports, 5, 364-368.
Nozari, B., Mirmohamadsadeghi, S., and Karimi K., (2018), “Bioenergy production from sweet sorghum stalks via a biorefinery perspective”, Applied Microbiology and Biotechnology, 102(7), 3425-38.
Obileke, K., Nwokolo, N., Makaka, G., Mukumba, P., and Onyeaka, H., (2021), “Anaerobic digestion: Technology for biogas production as a source of renewable energy, A review”, Energy & Environment, 32(2), 191-225.
Parajuli, R., Dalgaard, T., Jørgensen, U., Adamsen, A.P.S., Knudsen, M.T., Birkved, M., Gylling, M., and  Schjørring, J.K., (2015), “Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies”, Renewable and Sustainable Energy Reviews, 43, 244-263.
Rachbauer, L., Voitl, G., Bochmann, G., and Fuchs, W., (2016) , “Biological biogas upgrading capacity of a hydrogenotrophic community in a trickle-bed reactor”, Applied Energy, 180, 483-490.
Safari, A., Karimi, K., and Shafiei, M., (2017), “Dilute alkali pretreatment of softwood pine: A biorefinery approach”, Bioresource Technology, 234, 67-76.
Shi, X., Guo, X., Zuo, J., Wang, Y., and Zhang, M., (2018), “A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: Process stability and microbial community structure shifts”, Waste Management, 75, 261-269.
Singh, S., (2018), “Optimization of biogas production from City of Johannesburg market waste by anaerobic digestion for sustainable energy development”, University of Johannesburg.
Shirzad, M., Panahi, H.K.S., Dashti, B.B., Rajaeifar, M.A., Aghbashlo, M., and Tabatabaei, M., (2019), “A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran”, Renewable and Sustainable Energy Reviews, 111, 571-594.
Tabatabaei, M., Aghbashlo, M., Valijanian, E., Panahi, H.K.S., Nizami, A.-S., Ghanavati, H., Sulaiman, A., Mirmohamadsadeghi, S., and Karimi, K., (2020a), “A comprehensive review on recent biological innovations to improve biogas production, part 1: Upstream strategies”, Renewable Energy, 146, 1204-1220.
Tabatabaei, M., Aghbashlo, M., Valijanian, E., Panahi, H.K.S., Nizami, A.-S., Ghanavati, H., Sulaiman, A.,  Mirmohamadsadeghi, S., and Karimi, K., (2020b), “A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies”, Renewable Energy, 146, 1392-1407.
Xu, Z., Zhao, M., Miao, H., Huang, Z., Gao, S., and Ruan, W., (2014), “In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion”, Bioresource Technology, 163, 186-192.
Yan, C., Zhu, L., and Wang, Y., (2016), “Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities, and photoperiods”, Applied Energy,  178, 9-18.
Yuan, T., Cheng, Y., Zhang, Z., Lei, Z., and Shimizu, K., (2019), “Comparative study on hydrothermal treatment as pre-and post-treatment of anaerobic digestion of primary sludge: Focus on energy balance, resources transformation and sludge dewaterability”, Applied Energy, 239, 171-180.
Zhang, C., Su, H., Baeyens, J., and Tan, T., (2014), “Reviewing the anaerobic digestion of food waste for biogas production”, Renewable and Sustainable Energy Reviews, 38, 383-392.