Investigating the Effect of the Sizes of CuO Nanomaterials on Improving the Water Flux and Antifouling Properties of PVDF Nanocomposite Ultrafiltration Membrane in Urban Wastewater Treatment

Document Type : Research Paper

Authors

1 Ph.D. Student, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.

2 Assistant Professor, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.

3 Senior Research Expert, and Head of the Treatment Proceses Department, Water and Wastewater Research Center (WWRC), Water Research Institute (WRI), Tehran, Iran.

Abstract

In recent years, using PVDF polymer in the fabrication of ultrafiltration membranes has attracted the attention of water and wastewater industry researchers. However, the hydrophobic property of PVDF polymer has brought implementation and exploitation challenges. This study evaluates the effectiveness of copper oxide nanomaterials in three types of geometric shapes (nanoparticle, nanosheet, nanoball) to modify the PVDF polymer's hydrophobic structure. In this research, nanomaterials were synthesized by the hydrothermal method in different dimensions and sizes and then, were identified and characterized. Ultrafiltration membrane was made in the presence of PVDF (16% wt), PVP (1% wt), and CuO nanoparticles (1% wt) by the phase inversion method. The characterization results showed that the sheet nanomaterials are well dispersed in the membrane structure. Also, the amount of water flux and rejection of BSA protein in the membrane containing nanosheets was 263% and 98%, respectively. Compared to other nanocomposites, a lower amount of BSA was deposited on the surface of the membrane. Also, the release rate of copper ions in the water coming out of the membrane was within the standard range, which indicates the stability of CuO in the membrane structure. In this regard, sheet nanomaterials perform much better in modifying polymer nanocomposites.
 

Keywords


دولتشاه, م.، عطایی, م.، و اسدی، آ.، (1401)، "مروری بر عملکرد غشاهای اصلاح‌شده پلیمری اولترافیلتراسیون به‌منظور کاهش گرفتگی در تصفیه پساب"، علوم و مهندسی آب و فاضلاب, 7(4), 17–29.
هاشم زاده، ف.، و اکبرزاده، ع.، (1401)، "بررسی عملکرد بیورآکتور مستغرق غشایی (SMBR) در تصفیه فاضلاب‌های شهری و نساجی شاهین‌شهر اصفهان"، علوم و مهندسی آب و فاضلاب, 7(3), 72–84.
Alighardashi, A., Pakan, M., Jamshidi, S., and Shariati, F.P., (2017), “Performance evaluation of membrane bioreactor (MBR) coupled with activated carbon on tannery wastewater treatmenty”, Membrane Water Treatment, 8(6), 517-528, https://doi.org/10.12989/mwt.2017.8.6.517.
Alpatova, A., Meshref, M., McPhedran, K.N., and Gamal El-Din, M., (2015), “Composite polyvinylidene fluoride (PVDF) membrane impregnated with Fe2O3 nanoparticles and multiwalled carbon nanotubes for catalytic degradation of organic contaminants”, Journal of Membrane Science, 490, 227-235, https://doi.org/10.1016/j.memsci.2015.05.001.
Baghbanzadeh, M., Rana, D., Matsuura, T., and Lan, C.Q., (2015), “Effects of hydrophilic CuO nanoparticles on properties and performance of PVDF VMD membranes”, Desalination, 369, 75-84, https://doi.org/10.1016/j.desal.2015.04.032.
Beygmohammdi, F., Nourizadeh Kazerouni, H., Jafarzadeh, Y., Hazrati, H., and Yegani, R., (2020), “Preparation and characterization of PVDF/PVP-GO membranes to be used in MBR system”, Chemical Engineering Research and Design, 154, 232-240, https://doi.org/10.1016/j.cherd.2019.12.016.
Cao, X., Ma, J., Shi, X., and Ren, Z., (2006), “Effect of TiO2 nanoparticle size on the performance of PVDF membrane”, Applied Surface Science, 253(4), 2003-2010, https://doi.org/10.1016/j.apsusc.2006.03.090.
Goh, P.S., Ng, B.C., Lau, W.J., and Ismail, A.F., (2015), “Inorganic nanomaterials in polymeric ultrafiltration membranes for water treatment”, Separation and Purification Reviews, 44(3), 216-249, https://doi.org/10.1080/15422119.2014.926274.
Hu, M., Zhong, K., Liang, Y., Ehrman, S.H., and Mi, B., (2017), “Effects of particle morphology on the antibiofouling performance of silver embedded polysulfone membranes and rate of silver leaching”, Industrial and Engineering Chemistry Research, 56(8), 2240-2246, https://doi.org/10.1021/acs.iecr.6b04934.
Jia, H., Wu, Z., and Liu, N., (2017), “Effect of nano-ZnO with different particle size on the performance of PVDF composite membrane”, Plastics, Rubber and Composites, 46(1), 1-7, https://doi.org/10.1080/14658011.2016.1245032.
Korkmaz, Ş., Geçici, B., Korkmaz, S. D., Mohammadigharehbagh, R., Pat, S., Özen, S., Şenay, V., and Yudar, H.H., (2016), “Morphology, composition, structure and optical properties of CuO/Cu2O thin films prepared by RF sputtering method”, Vacuum, 131, 142-146, https://doi.org/10.1016/j.vacuum.2016.06.010.
Liang, S., Xiao, K., Mo, Y., and Huang, X., (2012), “A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling”, Journal of Membrane Science, 394-395, 184-192, https://doi.org/10.1016/j.memsci.2011.12.040.
Liu, F., Abed, M.R.M., and Li, K., (2011), “Preparation and characterization of poly(vinylidene fluoride) (PVDF) based ultrafiltration membranes using nano γ-Al2O3”, Journal of Membrane Science, 366(1-2), 97-103, https://doi.org/10.1016/j.memsci.2010.09.044.
Liu, F., Hashim, N.A., Liu, Y., Abed, M.R.M., and Li, K., (2011), “Progress in the production and modification of PVDF membranes”, Journal of Membrane Science, 375(1-2), 1-27, https://doi.org/10.1016/j.memsci.2011.03.014.
Marbelia, L., Bilad, M.R., and Vankelecom, I.F.J., (2019), “Gradual PVP leaching from PVDF/PVP blend membranes and its effects on membrane fouling in membrane bioreactors”, Separation and Purification Technology, 213, 276-282, https://doi.org/10.1016/j.seppur.2018.12.045.
Martins, P., Lopes, A.C., and Lanceros-Mendez, S., (2014), “Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications”, Progress in Polymer Science, 39(4), 683-706, https://doi.org/10.1016/j.progpolymsci.2013.07.006.
Mersian, H., and Alizadeh, M., (2020), “Effect of diverse Pechini sol-gel parameters on the size, morphology, structural and optical properties of the Tenorite (CuO) NPs: A facile approach for desired properties”, Ceramics International, 46(11), 17197-17208, https://doi.org/10.1016/j.ceramint.2020.03.275
Nie, C., Yang, Y., Peng, Z., Cheng, C., Ma, L., and Zhao, C., (2017), Aramid nanofiber as an emerging nanofibrous modifier to enhance ultrafiltration and biological performances of polymeric membranes”, Journal of Membrane Science, 528, 251-263, https://doi.org/10.1016/j.memsci.2016.12.070.
Ong, C.S., Lau, W.J., Goh, P.S., Ng, B.C., and Ismail, A.F., (2015), “Preparation and characterization of PVDF–PVP–TiO2 composite hollow fiber membranes for oily wastewater treatment using submerged membrane system”, Desalination and Water Treatment, 53(5), 1213-1223, https://doi.org/10.1080/19443994.2013.855679.
Rajendran, S., Mukherjee, A., Nguyen, T.A., and Shukla, R.K., (2020), Nanotoxicity: Prevention and antibacterial applications of nanomaterials, 1st Edition, Elsevier, https://doi.org/10.1016/C2018-0-05517-6. 
Slavin, Y.N., Asnis, J., Häfeli, U.O., and Bach, H., (2017), “Metal nanoparticles: understanding the mechanisms behind antibacterial activity”, Journal of Nanobiotechnology, 15(1), 65, https://doi.org/10.1186/s12951-017-0308-z.
Taha, T.A., and Mahmoud, M.H., (2021), “Synthesis and characterization of PVDF-Er2O3 polymer nanocomposites for energy storage applications”, Materials Chemistry and Physics, 270, 124827, https://doi.org/10.1016/j.matchemphys.2021.124827.
Valipour, A., Hamnabard, N., Meshkati, S.M.H., Pakan, M., and Ahn, Y.-H., (2019), “Effectiveness of phase-and morphology-controlled MnO2 nanomaterials derived from flower-like δ-MnO2 as alternative cathode catalyst in microbial fuel cells”, Dalton Transactions, 48(16), 5429-5443.
Wang, W., and Sun, H., (2020), “Effect of different forms of nano‐ZnO on the properties of PVDF/ZnO hybrid membranes”, Journal of Applied Polymer Science, 137(36), 49070.
Wang, W., Zhu, L., Shan, B., Xie, C., Liu, C., Cui, F., and Li, G., (2018), “Preparation and characterization of SLS-CNT/PES ultrafiltration membrane with antifouling and antibacterial properties”, Journal of Membrane Science, 548, 459-469.
Yang, C., Xiao, F., Wang, J., and Su, X., (2015), “3D flower- and 2D sheet-like CuO nanostructures: Microwave-assisted synthesis and application in gas sensors”, Sensors and Actuators, B: Chemical, 207(Part A), 177-185, https://doi.org/10.1016/j.snb.2014.10.063.
Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., Liu, C., and Yang, S., (2014), “CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications”, Progress in Materials Science, 60(1), 208-337, https://doi.org/10.1016/j.pmatsci.2013.09.003.
Zhou, Q., Zhang, Y., Zeng, T., Wan, Q., and Yang, N., (2021), “Morphology-dependent sensing performance of CuO nanomaterials”, Analytica Chimica Acta, 1171, 338663, https://doi.org/10.1016/j.aca.2021.338663.