Redevelopment of BSM1 Model to Model the Wastewater Treatment System of Carousel Oxidation, Case Study: South Tehran Wastewater Treatment Plant

Document Type : Research Paper

Authors

1 Associate Professor, School of Civil Engineering, College of engineering, University of Tehran, Tehran, Iran.

2 Ph.D. Student, School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran.

3 M.Sc. Student, School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Abstract

Due to continuous changes in the quantitative and qualitative characteristics of wastewater influent in wastewater treatment plants (WWTPs), it is necessary to evaluate the performance of WWTPs under different conditions and adopt appropriate control strategies. The first step in evaluating and improving the performance of a WWTP is to model it. In recent years, there has been an increase in the application of simulation software and mathematical models for this purpose. Calibration is considered the most important step in modeling because improper calibration can lead to unrealistic results with a large error. The main objective of this research is to redevelop the BSM11 model and provide different calibration scenarios to model the carousel oxidation system on a real scale. The high-accuracy model can then be used for various purposes, such as implementing different control strategies and improving the performance of the WWTP under different operating conditions. The developed model was implemented on modules 5 and 6 of the WWTP located in the south of Tehran. After determining the suitable process models for different units of the wastewater treatment plant, model calibration based on the GMP2 protocol was performed under two scenarios: 1) simultaneous calibration of parameters, and 2) step-by-step calibration of parameters. In each scenario, two objective functions were considered to evaluate the effect of main variables, including COD, TSS, and TN, and secondary variables, including X (MLSS3 of the aeration tank) and Xr (MLSS of the return sludge). The genetic algorithm was used to optimize the objective functions during the calibration process. The results showed that in the static calibration, the average error of all variables, as well as the variables considered in the objective function in scenario 2, were significantly reduced compared to scenario 1. The values in scenario 2 for objective function 1 were 2.7%, 7.8%, 8.2%, and 4.3% for the variables mentioned. Additionally, by considering more variables in the objective function, the cumulative error of all variables was reduced. In dynamic calibration, the average error rates of the model for TSS, COD, and TN were 29.8%, 19.8%, and 10.3%, respectively.

Keywords


 
اسدی آسیابدری، ف.، نصرتی، م.، و احمدی، م.، (1394)، "مدل‎سازی سیستم‌های تصفیه فاضلاب: مطالعه موردی مدل‌سازی تصفیه‌خانه پساب پالایشگاه تهران با نرم‎افزار Biowin"، اولین کنفرانس ملی توسعه پایدار در سیستمهای مهندسی انرژی، آب و محیط‌زیست، تهران.
دلنواز، م.، (1396)، "استفاده از مدل‌های ریاضی تعیین ضرایب سینتیکی رشد میکروارگانیسم‌ها برای ارزیابی کارایی تصفیه‌خانه‌های فاضلاب"، مجله مهندسی بهداشت محیط، 4(3)، 257-268.
رجایی، م.، (1399)،  "ارتقاء عملکرد تصفیه‌خانه فاضلاب با هدف کاهش هزینه‌های بهره‌برداری و افزایش قابلیت اطمینان سیستم"، پایان‌نامه کارشناسی ارشد، دانشگاه تهران.
رجایی، م.، و نظیف، س.، (1396)، "بهبود تاب‌آوری تصفیه‌خانه فاضلاب با استفاده از سیستم کنترل هوادهی"، سومین کنگره علوم و مهندسی آب و فاضلاب ایران، دانشگاه شیراز، شیراز، ایران.
رسولی، ر.، علافی اسکویی، ر.، غفارزاده، الف.، و سعادت‌پور، م.، (1401)، "بهینه‎سازی فرآیند هوادهی در تصفیه فاضلاب"، هجدهمین کنفرانس ملی پژوهش‌های نوین در علوم و مهندسی شیمی، بابل، ایران.
رحیمی، ا.، و شکوهیان، م.، (1401)، "بهینه‌سازی چند هدفه فرآیند تصفیه فاضلاب توسط الگوریتم فرا ابتکاری GA-NIMBUS  برپایه مطالعات آزمایشگاهی و مد‌‌‌‌ل‌سازی عددی )مطالعه موردی پایلوت A2O)"، چهارمین کنفرانس ملی مهندسی و مدیریت محیط‌زیست، مازندران. 
رهنمافر، ف.، و شکوهیان، م.، (1400)، "بهینه‌سازی عملکرد سیستم تصفیه فاضلاب به‎روش وتلند توسط مد‌‌‌ل‌سازی عددی )مطالعه موردی سه تصفیه‌خانه فاضلاب وتلند خراسان رضوی) ، بخش دوم: ارزیابی شبیه‌سازی، فاکتورهای اثرگذار و پیشنهادات اجرایی"، چهارمین همایش ملی فناوریهای نوین در مهندسی معماری، عمران و شهرسازی ایران، تهران، ایران. 
کلیوند، ز.، و قاضی مرادی، ش.، (1399)، "بررسی عملکرد ارتقای فرآیندی تصفیه‌خانه فاضلاب شهر بندرعباس"، کنفرانس ملی مهندسی شیمی و نانوفناوری، خوزستان.
Arnell, M., (2016), "Performance assessment of wastewater treatment plants, Multi-objective analysis using plant-wide models", Ph.D. Thesis, Lund University, Sweden.
Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T., Siegrist, H., and Vavilin, V.A., (2002), "The IWA Anaerobic Digestion Model No. 1 (ADM1)", Water Science and Technology : A Journal of the International Association on Water Pollution Research, 45(10), 65-73, https://doi.org/10.2166/wst.2002.0292.
Cao, J., Yang, E., Xu, C., Zhang, T., Xu, R., Fu, B., Feng, Q., Fang, F., and Luo, J., (2021), "Model-based strategy for nitrogen removal enhancement in full-scale wastewater treatment plants by GPS-X integrated with response surface methodology", Science of the Total Environment, 769, 144851, https://doi.org/10.1016/j.scitotenv.2020.144851.  
Chen, W., Dai, H., Han, T., Wang, X., Lu, X., and Yao, C., (2020), "Mathematical modeling and modification of a cycle operating activated sludge process via the multi-objective optimization method", Journal of Environmental Chemical Engineering, 8(6), 104470, https://doi.org/10.1016/j.jece.2020.104470.
Elawwad, A., Matta, M., Abo-Zaid, M., and Abdel-Halim, H., (2019), "Plant-wide modeling and optimization of a large-scale WWTP using BioWin’s ASDM model", Journal of Water Process Engineering, 31, 100819, https://doi.org/10.1016/j.jwpe.2019.100819.       
Gernaey, K.V., Van Loosdrecht, M.C.M., Henze, M., Lind, M., and Jørgensen, S.B., (2004), "Activated sludge wastewater treatment plant modelling and simulation: State of the art" Environmental Modelling and Software, 19(9), 763-783, https://doi.org/10.1016/j.envsoft.2003.03.005.
Henze, M., van Loosdrecht, M.C.M., Ekama, G.A., and Brdjanovic, D., (2019), "Biological wastewater treatment: Principles, modeling and design", Biological Wastewater Treatment: Principles, Modeling and Design, IWA Publishing, UK, https://doi.org/10.2166/9781780408613.
Hulsbeek, J.J., Kruit, J., Roeleveld, P., and van Loosdrecht, M.C.M., (2002), "A practical protocol for dynamic modelling of activated sludge systems", Water Science and Technology, 45(6), 127-136.
Hvala, N., Vrečko, D., Bordon, C., (2018), "Plant-wide modelling for assessment and optimization of upgraded full-scale wastewater treatment plant performance", Water Practice and Technology, 13(3), 566-582, https://doi.org/10.2166/wpt.2018.070.
Kim, S., Lee, H., Kim, J., Kim, C., Ko, J., Woo, H., and Kim, S., (2002), "Genetic algorithms for the application of Activated Sludge Model No. 1", Water Science and Technology, 45(4-5), 405-411, https://doi.org/10.2166/wst.2002.0636.
Lindblom, E., Jeppsson, U., and Sin, G., (2020), "Identification of behavioural model input data sets for WWTP uncertainty analysis", Water Science and Technology, 81(8), 1558-1568, https://doi.org/10.2166/wst.2019.427.
Noophan, P., Rodpho, R., Sonmee, P., Hahn, M., and Sirivitayaphakorn, S., (2018), "Nutrient removal performance on domestic wastewater treatment flants (full scale system) between tropical humid and cold climates", Applied Environmental Research, 40(2), 32-–39, https://doi.org/10.35762/aer.2018.40.2.3.
Otterpohl, R., and Freund, M., (1992), "Dynamic models for clarifiers of activated sludge plants with dry and wet weather flows", Water Science and Technology, 26(5-6), 1391-1400, https://doi.org/10.2166/wst.1992.0582.
Petersen, B., Gernaey, K., Henze, M., and Vanrolleghem, P.A., (2002), "Evaluation of an ASM1 model calibration procedure on a municipal-industrial wastewater treatment plant", Journal of Hydroinformatics, 4(1), 15-38, https://doi.org/10.2166/hydro.2002.0003.
Qasim, S.R., (1999), Wastewater treatment plants: Planning, design, and operation, Second Edition, Routledge, United States, https://doi.org/10.1201/9780203734209.
Rieger, L., Gillot, S., Langergraber, G., Ohtsuki, T., Shaw, A., Takacs, I., and Winkler, S., (2012), Guidelines for using Activated Sludge Models EWA Task Group on Good Modelling Practice, (Vol. 9781843391), IWA Publishing, UK.   
Sadri Moghaddam, S., and Pirali, M., (2021), "Modeling and calibration of a full-scale wastewater treatment plant using GPS-X model (A case study of Tehran)", Numerical Methods in Civil Engineering, 5(4), 67-76, https://doi.org/10.52547/nmce.5.4.67.
Shahed Behrouz, M., Zhu, Z., Matott, L S., and Rabideau, A.J., (2020), "A new tool for automatic calibration of the Storm Water Management Model (SWMM)", Journal of Hydrology, 581(2), 124436, https://doi.org/10.1016/j.jhydrol.2019.124436.
Takacs, I., Patry, G.G., and Nolasco, D., (1991), "A dynamic model of the clarification, Thickening process", Water Research, 25(10), 1263-1271.
Tejaswini, E.S.S., Panjwani, S., Gara, U.B.B., and Ambati, S.R., (2021), "Multi-objective optimization based controller design for improved wastewater treatment plant operation", Environmental Technology and Innovation, 23, 101591, https://doi.org/10.1016/j.eti.2021.101591. 
Tomita, R.K., and Park, S.W., (2009), "Evolutionary multi-objective optimization of an activated sludge process", Computer Aided Chemical Engineering, 27(C), 747-752, https://doi.org/10.1016/S1570-7946(09)70345-1.
Zeferino, J.A., Antunes, A.P., and Cunha, M.C., (2009), "An efficient simulated annealing algorithm for regional wastewater system planning", Computer-Aided Civil and Infrastructure Engineering, 24(5), 359-370, https://doi.org/10.1111/j.1467-8667.2009.00594.x.