Investigation of Arsenic Removal from Drinking Water Using Alum Coagulant

Document Type : Research Paper

Authors

1 MS.c. Student of Irrigation and Drainage, Imam Khomeini International University, Qazvin, Iran.

2 Associate Professor, Department of Water Engineering, Imam Khomeini International University, Qazvin, Iran.

Abstract

Increasing urbanization and industrialization of cities has led to an increase in pollutants and the production of many toxic elements. One of these pollutants is arsenic, which is known as one of the most toxic and dangerous elements in drinking water. The aim of this study is to investigate the method of minimizing the amount of this toxic substance by coagulation and flocculation in drinking water. In order to determine the optimal conditions for arsenic removal by coagulation and flocculation methods, in the first stage, the optimal pH is determined by Jar test as 6. Then by selecting alum as coagulant, lime as coagulant and the optimal pH, the optimal amount of chemical material is obtained as 7.5 mg/lit. Determining the optimal places in the current situation can be the novelty of this paper. At the end, the residual concentration of arsenic is determined by atomic hydride absorption spectroscopy. According to the concentration of arsenic in the incoming water sample which is equal to 91 micrograms per liter, the Jar test is performed in two stages with alum coagulants. Based on the optimal pH obtained in different concentrations of coagulants and also a constant concentration of coagulants, the arsenic removal efficiency in the best case in alum coagulants reached 88.46%, which is equal to 10 micrograms per liter, which according to the WHO, is an acceptable result. The result of this study indicates that the coagulation and flocculation method with alum coagulant and a constant amount of lime as a coagulant has a high efficiency in arsenic removal.

Keywords


 
باغوند، ا.، رضازاده، نجمه.، صالحی، م.، پورباور، م.، و دریابیگی، ع.، (1390) ، "استفاده از فرایند لخته‎سازی و انعقاد در تصفیه آب آشامیدنی"، پنجمین همایش تخصصی مهندسی محیطزیست، دانشگاه تهران، تهران.
بذرافشان، ا.، کرد مصطفی‎پور، ف.، احمد آبادی، م.، و افشارنیا، م.، (1394)، "بررسی کارایی عصاره دانه بنه به‎عنوان یک کمک منعقدکننده طبیعی در حذف آرسنیک از محیط­های آب"، نشریه پژوهش و سلامت، 5(1)، 49-42.

چالکش امیری، م.، (1402)، اصول تصفیه آب، چاپ شانزدهم، نشر ارکان دانش، اصفهان.

سلیمی، ف.، (1396)، "مروری بر فرآیند انعقاد شیمیایی برای حذف فلزات سنگین از آب"، علوم و مهندسی آب و فاضلاب، 2(4)، 53-41، https://doi.org/10.22112/JWWSE.2018.91145.1033.
کریمی، س.، اعتدالی رمضانی، ه.، و ستوده­نیا، ع.، (1401)، "بررسی حذف آرسنیک از آب آشامیدنی با استفاده از ماده منعقدکننده کلرورفریک"، علوم و مهندسی آب و فاضلاب،  7(1)، 55-61، https://doi.org/10.22112/JWWSE.2023.375872.1332
هاشمی، م.، مهدیارفر، م.، و آهنچی، ا.، (1395)، "بهینه‎سازی عوامل موثر در حذف آرسنیک از آب آشامیدنی به‎روش انعقاد و لخته‎سازی"، سومین کنفرانس بینالمللی دستاوردهای نوین پژوهشی در شیمی و مهندسی شیمی، کنفدراسیون بین‎المللی مخترعان جهان(IFIA) ، تهران.
Ansari, R., Hassanzadeh, M., and Ostovar, F., (2017), “Arsenic removal from water samples using CeO2 /Fe2O3 Nanocomposite”, International Journal of Nanoscience and Nanotechnology, 13(4), 335-345.
Baroni, F., Boscagli, A., Protano, G., and Riccobono, F., (2000), “Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area”, Environmental Pollution, 109(2), 347-352.
Choong, T.S., Chuah, T.G., Robiah, Y., Koay, F.G., and Azni, I., (2007). “Arsenic toxicity, health hazards and removal techniques from water: An overview”, Desalination, 217(1-3), 139-166. 
Goswami, A., Raul, P.K., and Purkait, M.K., (2012), “Arsenic adsorption using copper (II) oxide nanoparticles”, Chemical Engineering Research and Design, 90(9), 1387-1396, https://doi.org/10.1016/j.cherd.2011.12.006.
Grover, K., Komarneni, S., and Katsuki, H., (2010), “Synthetic hydrotalcite-type and hydrocalumite-type layered double hydroxides for arsenate uptake”, Applied Clay Science, 48(4), 631-637, https://doi.org/10.1016/j.clay.2010.03.017.
Guo, H., Stüben, D., and Berner, Z., (2007), “Adsorption of Arsenic (III) and Arsenic (V) from groundwater using natural siderite as the adsorbent”, Journal of Colloid and Interface Science, 315(1), 47-53, https://doi.org/10.1016/j.jcis.2007.06.035.
Hu, C., Lio, H., Chen, G., and Qu, J., (2012), “Effect of aluminum speciation on arsenic removal during coagulation process”,  Separation and Purification Technology, 89, 55-40, https://doi.org/10.1016/j.seppur.2011.10.017
Jong, T., and Parry D.L., (2003), “Removal of sulfate and heavy metals by sulfate reducing bacteria in short term bench scale upflow anaerobic packed bed reactor runs”, Water Research, 37(14), 3379-3389, https://doi.org/10.1016/S0043-1354(03)00165-9.
Karim, M., (2000), “Arsenic in groundwater and health problems in Bangladesh", Water Research, 34(1), 304-310, https://doi.org/10.1016/S0043-1354(99)00128-1.
Kim, M.J., and Nriagu, J., (2000), “Oxidation of Arsenite in groundwater using ozone and oxygen”, Science of The Total Environment, 247(1), 71-79, https://doi.org/10.1016/s0048-9697(99)00470-2.
Kong, Y., Kang, J., Shen, J., Chen, Z., and Fan, L., (2017), “Influence of humic acid on the removal of arsenate and arsenic by ferric chloride: Effects of pH, As/Fe ratio, initial As concentration, and co-existing solutes”, Environmental Science and Pollution Research, 24(3), 2381-2393, https://doi.org/10.1007/s11356-016-7994-1.
Nicomel, N.R., Leus, K., Folens, K., Van Der Voort, P., and Du Laing, G., (2016), “Technologies for arsenic removal from water: Current status and future perspectives”, International Journal of Environmental Research and Public Health, 13(1), 62, https://doi.org/10.3390/ijerph13010062.
Mólgora, C.C., Dominguez, A.M., Avila, E.M., Drogui, P., and Buelna, G., (2013), “Removal of arsenic from drinking water: A comparative study between  electrocoagulation- microfiltration and chemical coagulation-microfiltration process”, Separation and Purification Technology, 118, 645-651, https://doi.org/10.1016/j.seppur.2013.08.011.
Pio, I., Scarlino, A., Bloise, E., Mele, G., Santoro, O., Pastore, T., and Santoro, D., (2015), “Efficient removal of low- arsenic concentrations from drinking water by combined coagulation and adsorption processes”, Separation and Purification Technology, 147, 284-291, https://doi.org/10.1016/j.seppur.2015.05.002.
Rajkumar, M., Ae, N., Prasad, M.N.V., and Freitas, H., (2010), “Potential of sideropHore-producing bacteria for improving heavy metal pHytoextraction”, Trends in Biotechnology, 28(3), 142-149, https://doi.org/10.1016/j.tibtech.2009.12.002.
Song, S., Lopez-Valdivieso, A., Hernandez-campos, D.J., Peng, C., and Monroy-Fernandez, M.G., (2006), “Arsenic removal from high-arsenic water by enhanced coagulation with ferric and coarse calcite”,   Water Research, 40(2), 364-372, https://doi.org/10.1016/j.watres.2005.09.046.
Street, J.J., Lindzay., W.L., and Sabey, B.R., (1977), “Solubility and cplant uptake of cadmium in soils amended with cadmium and sewage sludge”, Journal of Environmental Quality, 6(1), 72-77, https://doi.org/10.2134/jeq1977.00472425000600010016x.
World Health Organization (WHO), (2011), Guidelines for drinking-water quality, 4th Edition, 631 p, Available: https://www.who.int/publications/i/item/9789241549 950.
Zade, P.D., and Dharmadhikari, D.M., (2007), “Removal of arsenic as arsenite from groundwater/wastewater as stable metal ferrite”, Journal of Environmental Science and Health, 42(8), 1073-1079, https://doi.org/10.1080/10934520701418565.