Phosphate Drain Water Treatment Using Wheat Straw Bioreactors

Document Type : Research Paper

Authors

1 M.Sc., Imam Khomeini International University, Qazvin, Iran.

2 Associate Professor, Department of Water Sciences and Engineering, Imam Khomeini International University, Qazvin, Iran.

3 Drainage Specialist, Tehran, Iran.

Abstract

Proper plant nutrition plays a crucial role in enhancing the quality and quantity of agricultural products. Phosphorus, a vital nutritional element, is often in short supply, severely limiting plant growth. The growing population and the consequent demand for more food have led farmers to use phosphorus-based fertilizers to boost production. However, this practice results in an excess of phosphorus entering agricultural drains and contaminating groundwater sources. To address this issue, the use of biological reactors for treating agricultural drainage water and removing elements like phosphorus has been explored. In this study, wheat straw and stubble were chosen as the substrate and content of the bioreactor due to their cost-effectiveness and widespread availability across Iran. Three galvanized iron boxes, each 1 m in length, width, and height, were used to simulate farm conditions. Each box was equipped with an outlet and an inlet for injecting drainage water and three points for collecting wastewater. The collection points were set at depths of 1, 6 and 16 cm from the bottom of the box. The boxes were filled with compacted wheat stubble up to a height of 20 cm from the floor, weighing 39 kg. The study was conducted over 51 days with four replications, using an effluent containing approximately 14 mg of phosphate per liter. All measurements were taken on-site using a 7100 photometer. The results showed that phosphate concentration decreased over time, with a minimum reduction of 48% and a maximum reduction of 97%, indicating the bioreactor’s satisfactory performance. Statistical tests such as the t-test and variance test revealed no difference in the reduction of element concentration (bioreactor performance) after 51 days of wheat straw and stubble life. The initial concentration was neutralized in this research due to the potential impact of temperature and initial concentration on the results. A covariance test was conducted to investigate the effect of temperature on the lifespan of straw and stubble, which showed no significant impact of temperature.

Keywords


صادقی، س.، الباحی، م.، گلابی، م.، و برومند نسب، س.، (1401)، "بررسی استفاده از زئولیت طبیعی کلینوپتیلولیت اصلاح‌شده در حذف نیترات، فسفات و شوری از زهاب کشاورزی در مدل زهکشی آزمایشگاهی"، علوم و مهندسی آبیاری، 45(1)، 131-152، https://doi.org/10.22055/JISE.2021.35721.1935.
نادری، آ.، رمضانی اعتدالی، ه.، اکرم، م.، و بی‌جن خان، م.، (1399)، "تصفیه نیترات زهاب­های کشاورزی با استفاده از بیوراکتور"، محیط‌زیست طبیعی، 73(3)، 613-624.
هاشمی، ا.، حیدرپور، م.، و مصطفی‌زاده، ب.، (1390)، "بررسی میزان حذف نیترات در دو حالت قرارگیری فیلترهای زیستی در سیستم‌های زه‌کشی زیرزمینی"، مجله علوم و  مهندسی آبیاری. 34(2)، 71-82.
همایی، م.، و ملکوتی، م.، (1373)، "حاصل‌خیزی خاک‌های مناطق خشک و نیمه حشک، مشکلات و راه‌حل‌ها"، انتشارات دانشگاه تربیت مدرس، 494 صفحه.
Addy, K., Gold, A.J., Christianson, L.E., David, M.B., Schipper, L.A., and Ratigan, N.A., (2016), “Denitrifying bioreactors for nitrate removal: A meta-analysis”, Journal of Environment Quality, 45(3), 873-881, https://doi.org/10.2134/jeq2015.07.0399.
Ashoori, N., Teixido, M., Spahr, S., Lefebvre, G.H., Sedlak, D.L., and Luthy, R.G., (2019), “Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban storm water runoff”, Water Research, 154, 1-11, https://doi.org/10.1016/j.watres.2019.01.040.
Chang, H., Yang, X., and Fang, H., (2006), “In situ nitrogen removal from the eutrophic water by microbial plant intergrated system”, Journal of Zhejiang University SCIENCE B, 7, 521-531.
Dixit, R., Malaviya, D., Pandiyan, K., Singh, U.B., Sahu, A., Shukla, R., and Paul, D., (2015), “Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes”, Sustainability, 7(2), 2189-2212, https://doi.org/10.3390/su7022189.
 Eslami, A., and Nemati, R., (2015), “Removal of heavy metal from aqueous environments using bioremediation technology_review”, Journal of Health in the Field, 2(3), 43-51. 
Greenan, C.M., Moorman, T.B., Kaspar, T.C., Parkin, T.B., and Jaynes, D.B., (2006), “Comparing carbon substrates for denitrification of subsurface drainage water”, Journal of enviremental quality, 35(3), 824-829, https://doi.org/10.2134/jeq2005.0247
Hassanpour, B., Giri, S., Pluer, W., Steenhuis T., and Geohiring, L. (2017), “Seasonal performance of denitrifying bioreactors in the Northeastern United States: Field trials”, Journal of Environmental Management, 202(1), 242-253, https://doi.org/10.1016/j.jenvman.2017.06.054.  
Kellman, L.M., (2005), “A study of tile drain nitrate -15N values as a tool for assessing nitrate sources in an agricultural region”, Nutrient Cycling in Agroecosystems, 71(2), 131-137.
Lopez-Ponnada, E.V., Lynn, T.J., Peterson, M., Ergas, S.J., and Mihelcic, J.R., (2017), “Application of denitrifying wood chip bioreactors for management of residential non-point sources of nitrogen”, Journal of Biological Engineering, 11(1), 16, https://doi.org/10.1186/s13036-017-0057-4.
Maxwell, B.M., Díaz-García, C., Martinez-Sánchez, J.J., Brigand, F., and Álvarez-Rogel, J., (2020), “Temperature sensitivity of nitrate removal in woodchip bioreactors increases with woodchip age and following drying–rewetting cycles”, Environmental Science: Water Research and Technology, 6(10), 2752-2765.
Mokarram, P., Jaberi, H., Khoshdel, Z., Miladpour, B., Ramezani, F., Fahmideh, M.A., and Movahedi, B., (2013), “Comparing the atomic absorption spectrophotometery and photometery”, Iranian Standardization Elements Congress of Kashan University of Medical Sciences, 16, 705-706. 
Rafiee, S., and Asadi Rahmani, H., (2010), “Isolation and identification of the different species of flavobacterium from the rhizosphere of wheat cultivated in the different regions of Iran”, Journal of Water and Soil, 24(2), https://doi.org/10.22067/JSW.V0I0.3242.
Sharrer, K.L., Christianson, L.E., Lepine, C., and Summerfelt, S.T., (2016), “Modeling and mitigation of denitrification ‘woodchip ’bioreactor phosphorus releases during treatment of aquaculture wastewater”, Ecological Engineering, 93, 135-143, https://doi.org/10.1016/j.ecoleng.2016.05.019.
South Dakota Water Research Institute, (2015), Annual Technical Report FY 2015, The College of Agricultural and Biological Sciences at South Dakota State University, USA.
Yanpeng, M., Chao, X., Qinyan, Y., Wenlong, W., and Zhanlong, S., (2018), “Fate and distribution of phosphorus in laboratory-scale membrane bioreactors”, Chemical Engineering Research and Design, 133(5), 204-209. https://doi.org/10.1016/j.cherd.2018.03.011.