The Removal of Azithromycin Antibiotic by Advanced Oxidation Method of Sodium Persulfate Activated by Steel Industry Slag from Pharmaceutical Effluent

Document Type : Research Paper

Authors

1 Professor, Faculty of Environment, University of Tehran, Tehran, Iran.

2 Professor, Environmental Technologies Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran.

3 Ph.D. Student in Water and Wastewater Engineering, Aras International Campus, University of Tehran, Aras, Iran.

4 Department of Environmental Health Engineering, School of Public Health, Jundishapur University of Medical Sciences, Ahvaz, Iran.

Abstract

Nowadays, the contamination of water resources with antibiotics are known as one of the major pollutants in the environment due to their widespread use, toxicity, causing drug resistance, and lasting effects. This study was designed to evaluate the efficiency of the advanced oxidation process of sodium persulfate activated with steel industry slag in the presence of ultraviolet rays, solution temperature, and pH aimed at eliminating the Azithromycin antibiotic from aqueous and effluent media. In the present study, the effect of the variables, including pH, solution temperature, reaction time, initial concentration of antibiotics, sodium persulfate concentration, and UV ray intensity was examined on the process efficiency. A High-Performance Liquid Chromatography (HPLC) machine was also used to measure the concentration of the Azithromycin antibiotic. According to the study results, under optimal and certain conditions in which sodium persulfate: 2 mM, pH: 2, iron ions level in the steel industry slag: 0.4 g/l, UV intensity: 8 watts, and during 60 minutes, the elimination efficiency rates of Azithromycin antibiotic, COD, and TOC were obtained as 91%, 57/4%, and 43/8%, respectively with a mineralization level higher than 55%. The rate of Azithromycin antibiotic removal was directly related to the concentrations of iron ions, sodium persulfate, UV intensity, and the temperature. However, increase in the pH from 2 to 10 led to decrease in the process efficiency from 81% to 43%, and enhance in the initial concentration of Azithromycin antibiotic from 5 to 50 mg/l also reduced the removal rate of the antibiotic from 73% to 43%. The research revealed that the advanced oxidation process of sodium persulfate activated by steel industry slag in the presence of ultraviolet rays can be used as a proper method with high efficiency to eliminate the high concentration of antibiotics found in a real sewage sample.

Keywords


 
تکدستان، ا.، ابطحی، م.، سرشیر، ع.، بازفکن، م.، و سعیدی، ر.، (1396)، "بررسی سرباره اصلاح شده شرکت فولاد خوزستان در حذف آلومینیوم از محلول­های آبی"، مجله تحقیقات سلامت در جامعه، 3، 78-85.
توسلی، ص.، بذرافشان، ا.، کرد مصطفی پور، ف.، مقصودی، ز.، بالاک، د.، کمانی، ح.، و الله زارعی، ع.، (1397)، "کارایی پرسولفات فعال‌شده با اشعه ماورای بنفش در حذف افلوکساسین از محلول­های آبی"، مجله دانشگاه علوم پزشکی مازندران، 28، 116-129.
حمزه‌زاده، ا.، فضل‌زاده، م.، و رحمانی، ک.، (1396)، "بررسی کارایی فرآیند نانو/پرسولفات (nZVI/PS) در حذف مترونیدازول از محیط‌های آبی"، مجله مهندسی بهداشت محیط، 4(4)، 307-320.
خزایی، ر.، رحمانی، ع.، صیدمحمدی، ع.، فردمال، ج.، و لیلی، م.، (1398)، "بررسی کارایی فرآیند UV/پراُکسی مونوسولفات درحذف آنتی‌بیوتیک سفیکسیم از محلول‌های آبی"، مجله علمی دانشگاه علوم پزشکی کردستان، 24(4)، 40-22.  
Ahmadi, M., Kakavandi, B., Jaafarzadeh, N., and Babaei A.A., (2017a), "Catalytic ozonation of high saline petrochemical wastewater using PAC@ FeIIFe2IIIO4: Optimization, mechanisms and biodegradability studies", Separation and Purification Technology, 177, 293-303.
Ahmadi, M., Kakavandi, B., Jorfi, S., and Azizi, M., (2017b), "Oxidative degradation of aniline and benzotriazole over PAC@ FeIIFe2IIIO4: A recyclable catalyst in a heterogeneous photo-Fenton-like system", Journal of Photochemistry and Photobiology A: Chemistry, 336, 42-53.
Avetta, P., Pensato, A., Minella, M., Malandrino, M., Maurino, V., Minero, C., Hanna, K., and Vione, D., (2015), "Activation of persulfate by irradiated magnetite: Implications for the degradation of phenol under heterogeneous photo-Fenton-like conditions", Environmental science and Technology, 49(2), 1043-1050.
Babaei, A.A., Azari, A., Kalantary, R.R., and Kakavandi, B., (2015), "Enhanced removal of nitrate from water using nZVI@MWCNTs composite: Synthesis, kinetics and mechanism of reduction", Water Science and Technology, 72(11), 1988-1999.
Babaei, A.A., Kakavandi, B., Rafiee, M., Kalantarhormizi, F., Purkaram, I., Ahmadi, E., and Esmaeili, S., (2017), "Comparative treatment of textile wastewater by adsorption, Fenton, UV-Fenton and US-Fenton using magnetic nanoparticles-functionalized carbon (MNPs@C)", Journal of Industrial and Engineering Chemistry, 56, 163-174.
Barndõk, H., Blanco, L., Hermosilla, D., and Blanco, Á., (2016), "Heterogeneous photo-Fenton processes using zero valent iron microspheres for the treatment of wastewaters contaminated with 1, 4-dioxane", Chemical Engineering Journal, 284, 112-121.
Esrafili, A., Rezaei Kalantary, R., Azari, A., Ahmadi, E., and Gholami, M., (2016), "Removal of diethyl phthalate from aqueous solution using persulfate-based (UV/Na2S2O8/Fe2+) advanced oxidation process", Journal of Mazandaran University of Medical Sciences, 25(132), 122-135.
Ferkous, H., Merouani, S., Hamdaoui, O., and Pétrier, C., (2017), "Persulfate-enhanced sonochemical degradation of naphthol blue black in water: Evidence of sulfate radical formation", Ultrasonics sonochemistry, 34, 580-587.
Gao, L., Shi, Y., Li, W., Niu, H., Liu, J., and Cai, Y., (2012), "Occurrence of antibiotics in eight sewage treatment plants in Beijing, China", Chemosphere, 86(6), 665-671.
García Perdomo, C.M., Ramírez Minota, P.A., Zúñiga-Benítez, H., and Peñuela, G.A., (2022), "Cephalexin removal by persulfate activation using simulated sunlight and ferrous ions", Water Science and Technology, 85(1), 52-62.
Ghauch, A., Baalbaki, A., Amasha, M., El Asmar, R., and Tantawi, O., (2017), "Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water", Chemical Engineering Journal, 317, 1012-1025.
Hu, M., (2022), "The mechanism of amoxicillin and azithromycin to treat acute tonsillitis", Proceedings of the 3rd International Symposium on Artificial Intelligence for Medicine Sciences, (pp. 334-338).
Jafari, A.J., Kakavandi, B., Jaafarzadeh, N., Kalantary, R.R., Ahmadi, M., and Babaei, A.A., (2017), "Fenton-like catalytic oxidation of tetracycline by AC@ Fe3O4 as a heterogeneous persulfate activator: Adsorption and degradation studies", Journal of Industrial and Engineering Chemistry, 45, 323-333.
Jeong, J., Song, W., Cooper, W.J., Jung, J., and Greaves, J.,  (2010), "Degradation of tetracycline antibiotics: mechanisms and kinetic studies for advanced oxidation/reduction processes", Chemosphere, 78(5), 533-540.
Ji, Y., Fan, Y., Liu, K., Kong, D., and Lu, J., (2015), "Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds", Water Research, 87, 1-9.
Jorfi, S., Barzegar, G., Ahmadi, M., Soltani, R.D.C., Takdastan, A., Saeedi, R., and Abtahi, M., (2016), "Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles", Journal of Environmental Management, 177, 111-118.
Jorfi, S., Kakavandi, B., Motlagh, H.R., Ahmadi, M., and Jaafarzadeh, N., (2017), "A novel combination of oxidative degradation for benzotriazole removal using TiO2 loaded on FeIIFe2IIIO4@C as an efficient activator of peroxymonosulfate", Applied Catalysis B: Environmental, 219, 216-230.
Kermani, M., Kakavandi, B., Farzadkia, M., Esrafili, A., Jokandan, S.F., and Shahsavani, A., (2018a), "Catalytic ozonation of high concentrations of catechol over TiO2@Fe3O4 magnetic core-shell nanocatalyst: Optimization, toxicity and degradation pathway studies", Journal of Cleaner Production, 192, 597-607.
Kermani, M., Mohammadi, F., Kakavandi, B., Esrafili, A., and Rostamifasih, Z., (2018b), "Simultaneous catalytic degradation of 2, 4-D and MCPA herbicides using sulfate radical-based heterogeneous oxidation over persulfate activated by natural hematite (α-Fe2O3/PS)", Journal of Physics and Chemistry of Solids, 117, 49-59.
Khaloo, S.S., Ghalkhani, M., and Sohooli, E., (2021), "Synthesis and application of TiO2/SiO2/rGO photocatalyst for photochemical degradation of erythromycin in aqueous solutions", Journal of Health in the Field, 9(1).
Kim, T., Kim, S., Tak, H., Kim, K., Chung, C-W., and Lee, M., (2020), "Mechanisms at different pH for stabilization of arsenic in mine tailings using steelmaking slag", Minerals, 10(10), 900.
Kordestani, B., Takdastan, A., Jalilzadeh Yengejeh, R., and Neisi, A.K., (2020), "Photo-Fenton oxidative of pharmaceutical wastewater containing meropenem and ceftriaxone antibiotics: Influential factors, feasibility, and biodegradability studies", Toxin Reviews, 39(3), 292-302.
Kurt, A., Mertm, B.K., Özenginm, N., Sivrioğlu, Ö., and Yonar, T.,  (2017), Treatment of antibiotics in wastewater using advanced oxidation processes (AOPs), Open Access Peer-Reviewed Chpter from the Edited Volume Physico-Chemical Wastewater Treatment and Resource Recovery, 175. 
Li, R., Kong, J., Liu, H., Chen, P., Liu, G., Li, F., and Lv, W., (2017), "A sulfate radical based ferrous–peroxydisulfate oxidative system for indomethacin degradation in aqueous solutions", RSC Advances, 7(37), 22802-22809.
Liu, P., Wu, Z., Abramova, A.V., and Cravotto, G., (2021), "Sonochemical processes for the degradation of antibiotics in aqueous solutions: A review", Ultrasonics Sonochemistry, 74, 105566.
Liu, X., Lee, J., Ji, K., Takeda, S., and Choi, K., (2012), "Potentials and mechanisms of genotoxicity of six pharmaceuticals frequently detected in freshwater environment", Toxicology Letters, 211(1), 70-76.
Michael, I., Rizzo, L., McArdell, C., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., and Fatta-Kassinos, D.J.W.R.,  (2013), "Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review", Water Research, 47(3), 957-995.
Mondal, S.K., Saha, A.K., and Sinha, A., (2018), "Removal of ciprofloxacin using modified advanced oxidation processes: Kinetics, pathways and process optimization", Journal of Cleaner Production, 171, 1203-14
Norzaee, S., Bazrafshan, E., Djahed, B., Kord Mostafapour, F., Khaksefidi, R., (2017), "UV activation of persulfate for removal of penicillin G antibiotics in aqueous solution", The Scientific World Journal, 2017, Article ID 3519487, https://doi.org/10.1155/2017/3519487.
Rao, Y., Qu, L., Yang, H., and Chu, W.,  (2014), "Degradation of carbamazepine by Fe (II)-activated persulfate process", Journal of Hazardous Materials, 268, 23-32.
Rezaei Kalantry, R., Jonidi Jafari, A., Esrafili, A., Kakavandi, B., Gholizadeh, A., and Azari, A., (2016), "Optimization and evaluation of reactive dye adsorption on magnetic composite of activated carbon and iron oxide", Desalination and Water Treatment, 57(14), 6411-6422.
Shankaraiah, G., Poodari, S., Bhagawan, D., Himabindu, V., and Vidyavathi, S., (2016), "Degradation of antibiotic norfloxacin in aqueous solution using advanced oxidation processes (AOPs), A comparative study", Desalination and Water Treatment, 57(57), 27804-27815.
Shiraz, A.D., Takdastan, A., and Borghei, S.M., (2018), "Photo-Fenton like degradation of catechol using persulfate activated by UV and ferrous ions: Influencing operational parameters and feasibility studies", Journal of Molecular Liquids, 249, 463-469.
Shokouhi, R., Poureshgh, Y., Almasi, H., and Shabanloo, A., (2016), "Sonochemical oxidation of phenol using persulfate activated by zerovalent iron nanoparticles in aqueous environments",  Journal of Occup Environ Health, 2(1), 7-17.
Takdastan, A., Abtahi, M., Sarshir, A., Bazafkan, M., and Saeidi, R., (2017), "Investigation of Khuzestan Steel Company’s modified slag in removal of Aluminum from Aqueous solutions: Adsorption isotherm and kinetic studies", Journal of Health Research in Community, 3(2), 78-85.
Takdastan, A., Kakavandi, B., Azizi, M., and Golshan, M., (2018), "Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: A new approach into catalytic degradation of bisphenol A", Chemical Engineering Journal, 331, 729-743.
Tan, C., Gao, N., Deng, Y., An, N., and Deng, J., (2012), "Heat-activated persulfate oxidation of diuron in water", Chemical Engineering Journal, 203, 294-300.
Tavassoli, P., Bazrafshan, E., Kord Mostafapour, F., Maghsoodi, Z., Balarak, D., Kamani, H., and Allah Zarei, A., (2018), "Efficiency of UV activated persulfate in removal of ofloxacin from aqueous solutions", Journal of Mazandaran University of Medical Sciences, 28(159), 116-129.
Xu, X-R., and Li, X-Z., (2010), "Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion", Separation and Purification Technology, 72(1), 105-111.