Application of Denitrification Wall in Nitrate Removal from Groundwater Aquifers

Document Type : Original Article

Authors

1 دانش آموخته کارشناسی ارشد دانشگاه تهران

2 Assistant prof. Of collage of Aburaihan , universitybof Tehran

Abstract

Groundwater nitrate pollution is nowadays one of the most important environmental issues with significant effect on human and environment health. Due to the importance of this vital water source, methods have been developed for purifying the groundwater contaminated with nitrate. One of the effective and long-lasting purification methods for groundwater contaminated with agricultural drains is the in-situ method of denitrification wall. The general concept of this technology is placing a denitrification wall with carbon material across the nitrate-contaminated groundwater pathway so that it can block the nitrate pollution as nitrate masses pass through the wall due to the groundwater natural hydraulic gradient. Despite widespread acceptance, there are still many unresolved issues regarding the long-term performance of denitrification walls which requires more understanding on the behavior, principles of design and construction methods of such walls. Accordingly the aim of this study was to fully investigate the technology and implementation of denitrification walls in all aspects. The method of this study was library type and the content, explored in simple expressions in different sections, is based on a descriptive-analytical approach to experimental and scientific experiences of this method on contaminated sites. Results showed that denitrification wall can be drilled underground either in form of funnel and gate or continuous configuration and the choice depends on the hydrological characteristics of the site and the cost of materials used in the wall. Also, when water flow contaminated with nitrate passes through the denitrification wall, nitrate pollution is treated with either adsorption or biological removal mechanisms or a combination of them. The right application of the denitrification wall can be economically efficient and the success of the system depends on the use of appropriate tools and solutions for accurate formulation of the problem in the real aquifer environment with its large dimensions and complexity. In this regard, numerical modeling and laboratory studies can help to achieve a detailed understanding of the problem in a real environment.

Keywords


 
تنگسیر، س.، (1396)، "تأثیر شوری آب آبیاری بر عملکرد دیوار دنیتریفیکاسیون کربنی در حذف نیترات زهاب زهکش‌های زیرزمینی"، پایان­نامه دکتری، گروه علوم مهندسی آب، دانشگاه شهید چمران اهواز، ایران.
خواهشی، ش.، دودانگه، ا.، و سعیدی، م.، (1391)، "استفاده از تکنولوژی دیواره واکنش­دهنده نفوذپذیردر تصفیه کروم شش ظرفیتی و نیترات از آب"، ششمین همایش ملی و نمایشگاه تخصصی مهندسی محیطزیست، دانشکده محیط‎زیست، دانشگاه تهران، تهران.
شبیه­زاده، آ.، (1395)، "رفع آلودگی خاک­های آلوده با استفاده از مانع تراوای واکنش­پذیر کربن فعال"، پایان­نامه کارشناسی ارشد رشته مهندسی عمران-محیط زیست، دانشکده فنی و مهندسی، موسسه آموزش عالی عمران و توسعه (غیرانتفاعی-غیردولتی).
قائمی­نیا، م.، (1395)، "کارایی موانع واکنش­دهنده نفوذپذیر (PRB) در حذف نیترات از آب­های زیرزمینی"، پایان­نامه کارشناسی ارشد رشته مهندسی عمران-محیط زیست، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس.
هاشمی، س.ا.، (1395)، "بررسی حذف نیترات از زه­آب اراضی شالیزاری مازنداران توسط فیلترهای زیستی"، پایان­نامه کارشناسی ارشد رشته مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری.
Araujo, R., Castro, A.C.M., Baptista, J.S., and Fiuza, A., (2016), “Nanosized iron based permeable reactive barriers for nitrate removal–Systematic review”, Physics and Chemistry of the Earth, Parts A/B/C, 94, 29-34.
Ashok, V., and Hait, S., (2015), “Remediation of nitrate-contaminated water by solid-phase denitrification process, A review”, Environmental Science and Pollution Research, 22(11), 8075-8093.
Barkle, G.F., Schipper, L.A., Burgess, C.P., and Painter, B.D., (2008), “In situ mixing of organic matter decreases hydraulic conductivity of denitrification walls in sand aquifers”, Groundwater Monitoring and Remediation, 28(1), 57-64.
Barrier, P.R., and Table, W., (1998), Permeable reactive barrier technologies for contaminant remediation, EPA/600/R.98/125, September.     
Benner, S.G., Blowes, D.W., and Molson, J.W.H., (2001), “Modeling preferential flow in reactive barriers: Implications for performance and design”, Groundwater, 39(3), 371-379.
Benyoucef, N., Cheikh, A., Drouiche, N., Lounici, H., Mameri, N., and Abdi, N., (2013), “Denitrification of groundwater using Brewer's spent grain as biofilter media”, Ecological Engineering, 52, 70-74.
Capodici, M., Morici, C., and Viviani, G., (2014), “Batch test evaluation of four organic substrates suitable for biological groundwater denitrification”, Chemical Engineering, 38(3), 43-48.
Carey, M.A., Fretwell, B.A., Mosley, N.G., and Smith, J.W.N., (2002), “Guidance on the use of permeable reactive barriers for remediating contaminated groundwater”, National Groundwater and Contaminated Land Centre Report NC, 1, p. 51.
Cheng, I.F., Muftikian, R., Fernando, Q., and Korte, N., (1997), “Reduction of nitrate to ammonia by zero-valent iron”, Chemosphere, 35(11), 2689-2695.
Della Rocca, C., Belgiorno, V. and Meriç, S., (2007), “Overview of in-situ applicable nitrate removal processes”, Desalination, 204(1-3), 46-62.
Elgood, Z., Robertson, W.D., Schiff, S.L., and Elgood, R., (2010), “Nitrate removal and greenhouse gas production in a stream-bed denitrifying bioreactor”, Ecological Engineering, 36(11), 1575-1580.
Erto, A., Lancia, A., Bortone, I., Di Nardo, A., Di Natale, M., and Musmarra, D., (2011), “A procedure to design a Permeable Adsorptive Barrier (PAB) for contaminated groundwater remediation”, Journal of Environmental Management, 92(1), 23-30.
Francis, G.S., and Haynes, R.J., (1991), “The leaching and chemical transformations of surface-applied urea under flood irrigation”, Nutrient Cycling in Agroecosystems, 28(2), 139-146.
Gibert, O., Pomierny, S., Rowe, I., and Kalin, R.M., (2008), “Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB)”, Bioresource Technology, 99(16), 7587-7596.
Gillham, R.W., Vogan, J., Gui, L., Duchene, M., and Son, J., (2010), “Iron barrier walls for chlorinated solvent remediation”, In: In Situ Remediation of Chlorinated Solvent Plumes (pp. 537-571), Springer, New York, NY.
Hashemi, S.E., Heidarpour, M., and Mostafazadeh-Fard, B., (2011), “Nitrate removal using different carbon substrates in a laboratory model”, Water Science and Technology, 63(11), 2700-2706.
Hatt, B.E., Siriwardene, N., Deletic, A., and Fletcher, T.D., (2006), “Filter media for stormwater treatment and recycling: The influence of hydraulic properties of flow on pollutant removal”, Water Science and Technology, 54(6-7), 263-271.
Healy, M.G., Rodgers, M., and Mulqueen, J., (2006), “Denitrification of a nitrate-rich synthetic wastewater using various wood-based media materials”, Journal of Environmental Science and Health Part A, 41(5), 779-788.
Henry, B.M., Perlmutter, M.W., and Downey, D.C., (2009), “Permeable organic biowalls for remediation of perchlorate in groundwater”, In: In Situ Bioremediation of Perchlorate in Groundwater (pp. 177-197), Springer, New York, NY.
Higgins, M.R., and Olson, T.M., (2009), “Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation”, Environmental Science and Technology, 43(24), 9432-9438.
Hosseini, S.M., Ataie Ashtiani, B., and Kholghi, M., (2011), “Bench-scaled Nano-Fe0 permeable reactive barrier for nitrate removal”, Groundwater Monitoring and Remediation, 31(4), 82-94.
Huang, G., Huang, Y., Hu, H., Liu, F., Zhang, Y., and Deng, R., (2015), “Remediation of nitrate–nitrogen contaminated groundwater using a pilot-scale two-layer heterotrophic–autotrophic denitrification permeable reactive barrier with spongy iron/pine bark”, Chemosphere, 130, 8-16.
Huang, Y.H., and Zhang, T.C., (2004), “Effects of low pH on nitrate reduction by iron powder”, Water Research, 38(11), 2631-2642.
Jackson, W.A., Asmussen, L.E., Hauser, E.W., and White, A.W., (1973), “Nitrate in surface and subsurface flow from a small agricultural watershed”, Journal of Environmental Quality, 2(4), 480-482.
Jafari, S.J., Moussavi, G., and Yaghmaeian, K., (2015), “High-rate biological denitrification in the cyclic rotating-bed biological reactor: effect of, nitrate concentration and salinity and the phylogenetic analysis of denitrifiers”, Bioresource Technology, 197, 482-488.
Jaynes, D.B., Kaspar, T.C., Moorman, T.B., and Parkin, T.B., (2008), “In situ bioreactors and deep drain-pipe installation to reduce nitrate losses in artificially drained fields”, Journal of Environmental Quality, 37(2), 429-436.
Jirasko, D., Vanicek, I., (2008), “Permeable Reactive Barrier (PRB) and its influence on groundwater regime”, Czech Technical University in Prague, Prague, Czech Republic, Construction on brownfields, 145-154.
King, A., Jensen, V., Fogg, G.E., and Harter, T., (2012), “Groundwater remediation and management for nitrate”, Technical Report 5 in: Addressing Nitrate in California’s Drinking Water with a Focus on Tulare Lake Basin and Salinas Valley Groundwater, Report for the State Water Resources Control Board Report to the Legislature, Center for Watershed Sciences, University of California, Davis.
Kunke, J., Bonsall, J., Coughlan, A., Ken Foreman, C. (2008), “The fate of nitrate entering a NITREXTM Permeable Reactive Barrier”, Semester in Environmental Science Independent Project, Ecosystem Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA., pp.1-22.
Li, R., Feng, C., Chen, N., Zhang, B., Hao, C., Peng, T., and Zhu, X., (2014), A bench-scale denitrification wall for simulating the in-situ treatment of nitrate-contaminated groundwater”, Ecological Engineering, 73, 536-544.
Li, R., Feng, C., Xi, B., Chen, N., Jiang, Y., Zhao, Y., and Zhao, B., (2017), “Nitrate removal efficiency of a mixotrophic denitrification wall for nitrate-polluted groundwater in situ remediation”, Ecological Engineering, 106, 523-531.
Li, T., Li, W., Feng, C., and Hu, W., (2017) “In-situ biological denitrification using pretreated maize stalks as carbon source for nitrate-contaminated groundwater remediation”, Water Science and Technology: Water Supply, 17(1), 1-9.
Long, L.M., Schipper, L.A., and Bruesewitz, D.A., (2011), “Long-term nitrate removal in a denitrification wall”, Agriculture, Ecosystems and Environment, 140(3), 514-520.
Madzin, Z., Faradiella, S.M., and Nurjaliah, S., (2016), “Passive in situ remediation using permeable reactive barrier for groundwater treatment”, Pertanika Journal of Scholarly Research Reviews, 2(2), 1-11.
Naftz, D., Morrison, S.J., Fuller, C.C., and Davis, J.A., (Eds.), (2002), Handbook of groundwater remediation using permeable reactive barriers: Applications to radionuclides, trace metals, and nutrients, Academic Press.
Obiri-Nyarko, F., Grajales-Mesa, S.J., and Malina, G., (2014), “An overview of permeable reactive barriers for in situ sustainable groundwater remediation”, Chemosphere, 111, 243-259.
Ott, N., (2000), Permeable reactive barriers for inorganics, USEPA, Washington DC.
Ovez, B., Ozgen, S., and Yuksel, M., (2006), “Biological denitrification in drinking water using Glycyrrhiza glabra and Arunda donax as the carbon source”, Process Biochemistry, 41(7), 1539-1544.
Perry, S., (2008), “Treating nitrate and perchlorate the natural way using Permeable Reactive Barriers”, Washington State Department of Health, AWWA WQTC Conference Proceedings.
Powell, R.M., Puls, R.W., Blowes, D.W., Gillham, R.W., and Schultz, D., (1998), “Permeable reactive barrier technologies for contaminant remediation”, National Service Center for Environmental Publications (NSCEP), pp.1-102.
Puls, R.W., (2006), “Long-term performance of Permeable Reactive Barriers: Lessons learned on design, contaminant treatment, longevity, performance Mmonitoring and cost: An overview”, In: Soil and Water Pollution Monitoring, Protection and Remediation, pp. 221-229, Springer, Dordrecht.
Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W., and Bemment, C.D., (2008), “Nitrate attenuation in groundwater: A review of biogeochemical controlling processes”, Water Research, 42(16), 4215-4232.
Robertson, W.D., and Cherry, J.A., (1995), “In situ denitrification of septic‐system nitrate using reactive porous media barriers: field trials”, Groundwater, 33(1), 99-111.
Robertson, W.D., Blowes, D.W., Ptacek, C.J., and Cherry, J.A., (2000), “Long-term performance of in situ reactive barriers for nitrate remediation”, Groundwater, 38(5), 689-695.
Robertson, W.D., Ptacek, C.J., and Brown, S.J., (2007), “Aquifer nitrate and perchlorate remediation using a wood particle layer”, Groundwater Monitoring and Remediation, 27, 85-95.  
Robertson, W.D., Vogan, J.L., and Lombardo, P.S., (2008), “Nitrate removal rates in a 15‐year‐old Permeable Reactive Barrier treating septic system nitrate”, Groundwater Monitoring and Remediation, 28(3), 65-72.
Robertson, W.D., Yeung, N., VanDriel, P.W., and Lombardo, P.S., (2005), “High‐permeability layers for remediation of groundwater; go wide, not deep”, Groundwater, 43(4), 574-581.
Schipper, L., and Vojvodić-Vuković, M., (1998), “Nitrate removal from groundwater using a denitrification wall amended with sawdust: field trial”, Journal of Environmental Quality, 27(3), 664-668.
Schipper, L.A., and Vojvodić-Vuković, M., (2000), “Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust”, Ecological Engineering, 14(3), 269-278.
Schipper, L.A., and Vojvodić-Vuković, M., (2001), “Five years of nitrate removal, denitrification and carbon dynamics in a denitrification wall”, Water Research, 35(14), 3473-3477.
Schipper, L.A., Barkle, G.F., Burgess, C.P., and Vojvodic-Vukovic, M., (2001), “Denitrification walls: Successes and limitations”, In: AGU Spring Meeting Abstracts.
Schipper, L.A., Barkle, G.F., Hadfield, J.C., Vojvodic-Vukovic, M., and Burgess, C.P., (2004), “Hydraulic constraints on the performance of a groundwater denitrification wall for nitrate removal from shallow groundwater”, Journal of Contaminant Hydrology, 69(3), 263-279.
Schipper, L.A., Robertson, W.D., Gold, A.J., Jaynes, D.B., and Cameron, S.C., (2010), “Denitrifying bioreactors: An approach for reducing nitrate loads to receiving waters”, Ecological Engineering, 36(11), 1532-1543.
Schmidt, C.A., and Clark, M.W., (2012), “Efficacy of a denitrification wall to treat continuously high nitrate loads”, Ecological Engineering, 42, 203-211.
Smith, J.W.N., Boshoff, G., and Bone, B.D., (2003), “Good practice guidance on permeable reactive barriers for remediating polluted groundwater, and a review of their use in the UK”, Land Contamination and Reclamation, 11(4), 411-418.
Soejima, T., Itoh, M., and Imamura, S., (2002) “In situ remediation of nitrate-contaminated ground water using a Permeable Reactive Barrier”, In Proceedings of the Fourth International Congress on Environmental Geotechnics,  pp. 811-816.
Tesoriero, A.J., and Voss, F.D., (1997), “Predicting the probability of elevated nitrate concentrations in the Puget Sound Basin: Implications for aquifer susceptibility and vulnerability”, Groundwater, 35(6), 1029-1039.
Thiruvenkatachari, R., Vigneswaran, S., and Naidu, R., (2008), “Permeable Reactive Barrier for groundwater remediation”, Journal of Industrial and Engineering Chemistry, 14(2), 145-156.
Van Rijn, J., Tal, Y., and Schreier, H.J., (2006), “Denitrification in recirculating systems: theory and applications”, Aquacultural Engineering, 34(3), 364-376.
Zhang, J., Hao, C., Feng, C., Hao, H., Zhang, B. and Lei, Z., (2015), “Effect of phosphate rock on denitrification in a nitrate-polluted groundwater remediation system”, Desalination and Water Treatment, 54(1), 265-274.