Investigation of Effective Parameters in the Combined System of Microstrainer and Ozonation in the Removal of Algae from Raw Water

Document Type : Research Paper

Authors

1 Associate Professor, Department of Civil-Environmental Engineering, Babol Noshirvani University of Technology, Babol, Iran.

2 MSc. Student, Department of Civil-Environmental Engineering, Babol Noshirvani University of Technology, Babol, Iran.

Abstract

The presence of algae in the water treatment process is problematic. The best way to control algae is to remove the algae cell intact without rupturing the cell, as most common methods cause disinfection by-products, which are often very dangerous. The aim of this study was to evaluate the efficiency of microstrainer and ozonation systems in combined removal of algae from raw water. For this purpose, Box-Behnken Design was used in the Response Surface Methodology by Design Expert software. Experimental variables included input turbidity (50-150 NTU), microstrainer surface load (10.8-18 m/h) and injectable ozone dose (1-3 mg/L). Based on the experimental conditions, the algae removal efficiency in the integrated microstrainer and ozonation system was 39.64-88.76%. The parameters of inlet water turbidity, injected ozone dose and micro-strainer surface load with effect coefficients of 15.37, 8.98 and 4.01, respectively, had the greatest effect on system efficiency in algae removal. Increasing the turbidity and surface load of the microstrainer decreased the algal removal efficiency and increased the injection ozone dose increased the efficiency. The final model based on the desired parameters was obtained as a quadratic equation with correlation coefficient, modified correlation coefficient and predicted correlation coefficient equal to 0.948, 0.928 and 0.868, respectively.

Keywords


 
تکدستان، ا.، جعفرزاده، ن.، و فاخری رئوف، ف.، (1385)، "بررسی مشکلات ناشی از جلبک‎ها در منابع و تصفیه‎خانه آب و روش‎های مختلف فیزیکی،شیمیایی و بیولوژیکی کنترل آن‎ها"، سومین همایش ملی بحرانهای زیست محیطی ایران و راهکارهای بهبود آنها، اهواز.
عبداله‌زاده، م.، صفائی، م.، و سجادی‎پور، ر.، (1393)، " استفاده مجدد پساب شستشوی صافی و افزایش کیفیت آن توسط میکرواسترینر در تصفیه‎خانه‎های آب کشور"، همایش ملی بازیافت آب؛ راهبردی اصولی برای مدیریت بحران آب، تهران.
قربانی، م.، باقریان، ع.، (1395)، "بهینه‎سازی جذب سطحی با روش طراحی آزمایش پاسخ سطح برای رنگ آسترازون آبی توسط رزین کوپلیمر استایرن- دی وینیل بنزن سولفونه شده"، نشریه شیمی و مهندسی شیمی ایران، کرج، 35(1)، 37-25.
Abrha, Y.W., Kye, H., Kwon M., Lee, D., Kim, K., Jung, Y., Ahn, Y., and Kang, J.W., (2018), “Removal of algae, and taste and odor compounds by a combination of Plant-Mineral Composite (PMC) coagulant with UV-AOPs: Laboratory and pilot scale studies”, Applied Science, 8(9), 1502.
Albert, E., and Berry, G., (1961), "Removal of algae by microstrainers", American Water Works Association, 53(12), 1503-1508.
Briley, D.S., and Knappe, D.R., (2002), “Optimization ferric sulfate coagulation of algae with streaming current measurements”, Journal of American Water Works Association (AWWA), 94(2), 80-90.
Chen J.J., Yeh, H.H., and Tseng, Ch., (2009), “Effect of ozone and permanganate on algae coagulation removal, pilot and bench scale tests”, Chemosphere, 74(6), 840-846.
Chena, J.J., and Yeh, H.H., (2005), "The mechanisms of potassium permanganate on algae removal", Water Research, 39(18), 4420-4428.
Clark, R. M., and Summers, R.S., (1993), Strategies and technologies for meeting SDWA requirements, CRC Press, 17-28.
Cojocaru, C., and Zakrzewska-Trznadel, G., (2007),”Response Surface Modeling and Optimization of Copper Removal from Aqua Solutions Using Polymer Assisted Ultrafiltration”, Membrane Sci, 298(1-2), 56–70.
Czyzewska, W., and Piontek, M., (2019), “The efficiency of microstrainers filtration in the process of removing phytoplankton with special consideration of cyanobacteria”, MDPI, Toxins, 11(5), 1-13.
Deyab, M.A., ElAdl, M.F., and ElTantawy, M.E., (2015), “Efficiency assessment of drinking water treatment processes in the removal of phytoplankton at Damietta-Egypt”, Scientific Journal for Damietta Faculty of Science, 5(1), 48-61.
Dong, L., and Huo, M., (2021), “Effective removal of algae from water by Diatomite Enhanced Graphene Oxide Flocculation”, Polish Journal of Environmental Studies, 30(5), 3955-3962.
Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandäo, G.C., Da Silva, E.G.P., Portugal, L.A., Dos Reis, P.S., Souza, A.S., and Dos Santos, W.N.L., (2007), “Box-Behnken design: An alternative for the optimization of analytical methods”, Analytica Chimica Acta, 597(2),, 179-186.
Kraan, J., and Ghadouani, A., (2017), “Assessment of screen filters fora removal from treated wastewater”, CEED Seminar Proceedings, Australia, 79-84.
Liu, Q., Liu, H., Wu, Sh., and Duan, Z., (2015), “Advanced oxidation processes for the removal of algal cells and cyanotoxins from drinking water”, 2nd International Workshop on Materials Engineering and Computer Sciences (IWMECS 2015), Atlantis Press, 801-804.
Ma, J., and Liu, W., (2002), “Effectiveness and mechanism of potassium ferrate (VI) preoxidation for algae removal by coagulation”, Water Research. 36(4), 871-878.
Middlebrooks, E.J., Porcella, Donald B., Gearheart, Robert A., Marshall, Gary R., Reynolds, James H., and Grenney, William J., (1974), “Review paper: Evaluation of techniques for algae removal from wastewater stabilization ponds”, Reports, Utah Water Research Laboratory, Paper 20
Matter, I.,A., Hoang, V.K.H., Seo, J.Y., Kim, Y.E., Lee, Y.Ch., and Oh, Y.K., (2019), “Flocculation harvesting techniques for microalgae: A review”, Applied Sciences, 9(15), 3069.
Montiel, A., and Welte, B., (1998), “Preozonation coupled with flotation filtration: Successful removal of algae”, Water Science and Technology, 31(2), 13-65.
Mouchet, P., and Bonnelye, V., (1998), “Solving algae problems: French expertise and world-wide applications”, Research and Technology-Aqua, Water Supply, 47(3), 125-141.
Parabrahmam, M., Lakshminarayana, J., and Bopardikar, M., (1968), “Application of microstrainer to water treatment at Nagpur (India)”, Water Research. 2(3), 225-23.
Piontek, M., and Czyżewska, W., (2012), “Efficiency of drinking water treatment processes, removal of phytoplankton with special consideration for cyanobacteria and improving physical and chemical parameters”, Polish Journal of Environmental Studies, 21(6), 1797-1805.
Plummer, J., and Edzwald, J., (2001), “Effect of ozone on algae as precursors for trihalomethane and haloacetic acid production”, Environmental Science and Technology, 35(18), 3661-3668.
Ratnayaka, D.D., Brandt, J., and Johnson, M., (2009), Water supply, Butterworth-Heinemann, Elsevier, Chapter 7, 267-314.
Rimer, A.E., (1973), “Prototype study of microstraining at a paper mill complex”, Water Pollution Control Federation, 45(12), 2567-2576.
Shen, Q., Zhu, J., Cheng, L., Zhang, J., Zhang, Z., and Xu, X., (2011), “Enhanced algae removal by drinking water treatment of chlorination coupled with coagulation”, Desalination, 271(1-3), 236-240.
Smith, J., (1991), Technologies for upgrading existing or designing new drinking water treatment facilitie, Elsevier Science, Paper 374.
Xie, P., Ma, J., Fang, J., Guan, Y., Yue, S., Li, X., and Chen, L., (2013), “Comparison of  permanganate preoxidation and preozonation on algae containing water: Cell integrity, characteristics, and chlorinated disinfection byproduct formation”, American Chemical Society, Environmental Science and Technology, 47(24), 14051-14061.