Water Crisis Management Strategy through Investigation of Virtual Water Using CROPWAT Software

Document Type : Research Paper

Authors

1 PHD of Environment Engineering, Department of Civil Engineering, Aryan Institute of Science and Technology, Babol, Iran

2 Master of Water and Hydraulic Structures, Department of Civil Engineering, Aryan Institute of Science and Technology, Babol, Iran

3 Department of Civil Engineering, Nowshahr Branch, Islamic Azad University, Nowshahr,Iran

Abstract

Water is one of the most important components of sustainable life. However, the excessive use of this vital element has caused irreparable damage to the limited water resources, and the agricultural industry assumed as the largest amount of consumed water. In recent years, the significant reduction of water resources as well as the growing trend of drought necessitates a review and change in the agricultural induster. In this research the water requirement of agricultural plants of Mazandaran province including rice, wheat, barley and citrus is estimated in order to investigate the volume of green and blue virtual water, exported and imported water by these crops across the province. Meteorological data such as rainfall, maximum and minimum temperature, relative humidity, sundial of the area and information such as cultivation area, crops yield rate, exported and imported water volume collected from relevant agencies over the last ten years. FAO Penman-Monteith and USDA methods in CROPWAT software used to estimate virtual water and water needs. Results showed that rice, wheat, barley and citrus consumption accounted for the largest water requirement. Also, rice water requirement is blue water and wheat, barley and citrus plants consume green water sources which is not relocated and is not suitable for other purposes or storage. Consequently, due to the climatic potential of Mazandaran province, the pattern of cultivation alter to plants with low water requirements that are able to absorb their required water from green water sources, such as wheat, barley and citrus as well as lower plant area with abundant water requirement such as rice can save more water resources and the water crisis could be effectively in control.

Keywords


 
آبابایی، ب.، و رمضانی، ح.، (1394)، "ردپای آب مجازی در محصولات گندم ایران"، مجله آب‌وخاک، 23(6)، 1458-1468.
بذرافشان، الف.، دهقان‌پیر، ش.، و حلی‌ساز، آ.، (1396)، "برآورد بیلان آب مجازی در بخش کشاورزی در استان هرمزگان طی دهه گذشته"، مجله مدیریت بیابان، 5(10)، 116-129.
تهامی‌پور، م.، و عابدی، س.، (1396)، "ارزیابی تجارت آب مجازی در بخش صنعت استان زنجان"، مجله آب و فاضلاب، 28(3)، 45-36.
چوپان، ی.، و امامی، س.، (1399)، "بررسی امکان‌سنجی بهره‌گیری از پساب تصفیه‌خانه فاضلاب شهری تربت‌حیدریه برای آبیاری محصولات کشاورزی"، نشریه علوم و مهندسی آب و فاضلاب ،5(1)، 39-45.
 زارع ابیانه، ح.، آرام ،م.، اخوان، س.، (1394)"ارزیابی حجم آب مجازی مبادلاتی محصولات عمده زراعی استان همدان"، مجله پژوهش آب ایران، 9(3)، 151-161.
معلمی ،م.، (1397)،"بررسی تأثیر رشد درآمد سرانه بر رشد خالص واردات آب مجازی در کشورهای منتخب"، مجله نظریه‌های کاربردی اقتصاد، 5(1)، 133-158.
 موسوی، ن.، اکبری، م.، سلطانی ،غ.، زارع ،م.، (1388)،"آب مجازی:راه‎کارهای نوین در جهت مقابله با بحران آب"، همایش ملی مدیریت بحران آب، دانشگاه آزاد اسلامی واحد مرودشت.
Ababaei, B., and Ramezani, H., (2014), “Estimation of water footprint component of Iran’s wheat production, comparison of global and national scale estimates”, Environmental Process Journal, 1(3), 193-205.
Allen, R.G., Pereira, L.S., Rase D., and Smith, M., (1998), “Crop evapotranspiration: Guidelines for computing crop requirements, irrigation and drainage paper”, FAO (Food and Agriculture Organization) of the United Nations, 56.
BadrulMasud, M.,Wada, Y., Goss, G., and Faramarzi, M., (2019), “Global implications of regional grain production through virtual water trade” , Science of the Total Environment, 659, 807-820.
Faramarzi, M., Yang, H., Mousavi, J., Schulin, R., Binder, C.R., and Abbaspour, K.C., (2010), “Analysis of intra-country virtual water trade strategy to alleviate water scarcity in Iran”, Hydrology and Earth Sciences, 14(8), 1417-1433.
Gerbens-Leenes, W., Hoekstra, A.Y., and Vander Meer, T.H., (2009), “The water footprint of bioenergy”, Proceeding of the National Academy of Sciences, 106(25), 10219-10223.
Hoekstra, A., and Mekonnen, M., (2016), “Imported water risk: The case of the UK”, Environmental Research Letters, 11(5), 50-52.
Hoekstra, A.Y., Chapagain, A.K., (2008), Globalization of water: Sharing the planet’s freshwater resources, Blackwater Publishing, Oxford, UK.
Hoekstra, A.Y., Chapagain, A.K., Aldaya, M.M., and Mekonnen, M.M., (2009), Water footprint manual: State of the art, Water Footprint Network, Enschede, the Netherlands.
Horlemann, L., and Neubert, S., (2007), A realistic concept for resolving the water crisis inter-and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin virtual water trade, Research Report, German Development Institute, pp. 216-227.
Lillywhite, R., (2010), “Footprinting methods for assessment of the environmental impacts of food production and processing”, In: Environmental Assessment and Management in the Food Industry, The University of  Warwick, pp. 255-271. 
Liu, J., Williams, J.R., Zehnder, A.J.B., and Yang, H., (2007), “GEPIC-modeling wheat yield and crop water productivity with high resolution on a global scale”, Agricultural Systems, 94(2), 478-493.
PourSalehi, F., Khashei, A., and Bidokhti, Z., (2016), “Changes in cropping pattern and intensification based on virtual water with the saffron centrality (Case Study: Birjand plain)”, Journal of Zaffron Research, 3(1), 18-30.
Salah, A., (2014), “Investigating virtual water trade patterns in economic activity of Guilan province by application of expanded input-output table”, M.Sc. Thesis, School of Economics, Shahid Beheshti University, Iran.
Yang, H., Wang, L., Abbaspour, K.C., and Zehnder, A.J., (2006), “Virtual water highway: Water use efficiency in global trade”, Hydrology and Earth System Sciences, 3(1), 1-26.
Yang, H., Wang, L., Abbaspour, K.C., and Zehnder, A.J., (2006), “Virtual water trade: An assessment of water use efficiency in the international food trade”, Hydrology and Earth System Sciences, 10(3), 443-454.
Zhao, A., Zhu, X., Liu, X., Pan, Y., and Zuo, D., (2016), “Impacts of land use change and climate variability on green and blue water resources in the Weihe River Basin of northwest China”, CATENA Journal, 137, 318-32.
Zhao, X., Yang, H., Yang, Z., Chen, B., and Qin, Y., (2010), “Applying the input-output method to account for water footprint and virtual water trade in the Haihe River basin in China”, Environmental Science and Technology, 44(23), 9150-91.