Numerical Solution of Advection-Dispersion Equation using Mesh-free Petrov-Galerkin Method (Case Study: Murray Burn River)

Document Type : Research Paper

Authors

1 Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran

2 Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran.

3 Department of Water Structures, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

Abstract

Transport of pollutants in rivers is one of the most important issues in the environment. Many researchers have solved the advection-dispersion equation by various numerical methods, including finite difference and finite element methods. Despite their advantages, these methods also have disadvantages that are often related to netting of the problem domain. Therefore application of mesh-free methods which do not require solution domain network seems necessary. In the present study, the one-dimensional advection-dispersion equation has been solved using the Mesh-free Local Petrov-Galerkin method in the unsteady state. The Murray Burn River data were used to evaluate the performance of the model. The used approximation and weight function were the moving least squares function and the cubic spline function, respectively. In this study, 9 experiments were used to calibrate the model and 2 experiments were used to validate it. For calibration, the discharge coefficient and velocity plotted against the flow rate, and the power regression equation was extracted which had correlation coefficients of 0.925 and 0.988, respectively. In the validation mode, the dispersion coefficient and velocity were optimized by minimizing the mean squared error between computational and observational concentration for each model. The dispersion coefficient in this study was in the range of 0.13-1.1 m2/s for the flow rate of 13-437 L/s. The results indicated the acceptable performance and accuracy of mesh-free method.

Keywords


 
براتی مقدم، م.، مظاهری، م.، و محمد ولی سامانی، ج.، (1394)، "مدل یک بعدی انتقال آلاینده در رودخانه‎های طبیعی با تأکید بر نقش نواحی نگهداشت"، مجله مدیریت آب و آبیاری، 5(2)، 169-190.
دیمه‎ور، س.، (1396)، "حل عددی معادلات آب‎های کم‎عمق با استفاده از روش بدون شبکه پتروف-گالرکین"، پایان‎نامه کارشناسی‎ارشد عمران-منابع آب، دانشگاه بیرجند، خراسان جنوبی، ایران.
محتشمی، ع. (1395)، "استفاده از روش بدون شبکه در مدل‎سازی جریان آب زیرزمینی در آبخوان آزاد"، پایان‎نامه کارشناسی‎ارشد عمران-منابع آب، دانشگاه بیرجند، خراسان جنوبی، ایران.
مشهدگرمه، ن.، محمد ولی سامانی، ج.، و مظاهری، م.، (1392)، "حل تحلیلی معادله انتقال آلودگی به‎ازای الگوی زمانی دلخواه منابع آلاینده نقطه‎ای توسط روش تابع گرین"، مجله هیدرولیک، 8(4)، 13-25.
Atluri, S.N., and Zhu, T.A., (1998), "A new meshless method (MLPG) approach in computational mechanics", Journal of Computaional Mechanics, 22(2), 117-127.
Belytschko, T., Gu, L. and Lu, Y., (1994), "Fracture and crack growth by element free Galerkin methods", Journal of Modelling and Simulation in Materials Science and Engineering, 2(3A), 519-534.
Boddula, S. and Eldho, T.I., (2017), "A moving least squares based meshless local petrov-galerkin method for the simulation of contaminant transport in porous media", Journal of Engineering Analysis with Boundary Elements, 78, 8-19.
Chapra, S.C., (1997), Surface water-quality modeling, Vol. 1, McGraw-Hill New York.
Fischer, H.B. (1979), Mixing inland and coastal waters, Academic Press.
Kolahdoozan, M., and Gargary, S.F., (2015), "Solving the one dimensional advection diffusion equation using mixed discrete least squares meshless method", Proceedings of the International Conference on Civil, Structural and Transportation Engineering, Ottawa, Ontario, Canada, pp. 292(1)- 292(8).
Li, J., Chen, Y., and Pepper, D., (2003), "Radial basis function method for 1-D and 2-D groundwater contaminant transport modeling", Journal of Computational Mechanics, 32(1), 10-15.
Lin, H., and Atluri, S.N., (2000), "Meshless local Petrov-Galerkin (MLPG) method for convection diffusion problems", Computer Modelling in Engineering & Sciences (CMES), 1(2), 45-60.
Liu, G.-R. (2002), Mesh free methods: Moving beyond the finite element method, CRC press. New York Washington, D.C.
Liu, G.-R. and Gu, Y.T., (2005), An introduction to meshfree methods and their programming, Springer Science and Business Media, New York, Heidelberg.
Mousavi, S., Young, D., and Tsai, C., (2016), "Comparison of localized radial basis functions’ (LRBF) solution of the two-dimensional advection–diffusion equation to the finite difference methods’ (FDM)", Proceedings of 12th International Conference on Hydroscience and Engineering. Tainan, Taiwan.
Pathania, T. and Eldho, T.I., (2020), "A moving least squares based meshless element-free Galerkin method for the coupled simulation of groundwater flow and contaminant transport in an aquifer", Journal of Water Resources Management, 34(15), 4773-4794.
Tayefi, Sh., Pazirandeh, A., and Kheradmand Saadi, M., (2018), "A meshless local Petrov-Galerkin method for solving the neutron diffusion equation", Journal of Nuclear Science and Techniques, 29(169), 1-19.
Wackerly, D., Mendenhall, W., and Scheaffer, R.L., (2014), Mathematical statistics with applications, Cengage Learning.
Wallis, S.G., Bonardi, D., and Silavwe, D.D., (2014), "Solute transport routing in a small stream", Hydrological Sciences Journal, 59(10), 1894-1907.