Synthesis and Efficiency Evaluation Fe2O3@SiO2 Nanoparticle in Acid Blue 92 Removal from Aqueous Solutions: Equilibrium and Kinetic Studies

Document Type : Research Paper


1 Department of Environmental Health, zabol University of Medical Sciences, Zabol, Iran

2 Department of Environmental Health, Health Promotion Research Center, Zabol University of Medical Sciences, Zabol, Iran

3 BSc Student of Environmental Health, Department of Environmental Health, Zabol University of Medical Sciences, Zabol, Iran

4 Department of physics, university of Zabol, Zabol, Iran


Dyes are one of the most important existing pollutants in textile industrial wastewater. They are often toxic, carcinogenic, teratogenic, and non-biodegredable. So the aim of this study was synthesis Fe2O3@SiO2 nanoparticle and using it as adsorbent for the removal of acid blue 92 from aqueous solutions. In this study, the electrochemical method for synthesis nanoparticle was used and characteristics of nanoparticle were analyzed by SEM (Scanning electron microscopy) technique. In this study, the effect of the pH (2-11), contact time (20-150 min), nanoparticle dosage (0.02-0.14g/L) and concentration of dye (20-120 mg/L) was investigated by one factor at the time method and then was optimized. The pH equal to 2, contact time of 40 min, and absorbent of 0.08 g/l was obtained as experimental data correlate to the pseudo-second order kinetic (R2=0.995) and Dubinin-Radushkevich adsorption isotherm model (R2=0.989). In optimal conditions, Fe2O3@SiO2 nanoparticle has well potential to quickly and effectively remove dye and simply be separated from the solution by the magnet due to its magnetic property.


احمدآبادی، م.، رهدار، س.، و تقوی، م.، (1395)، "بررسی حذف رنگ بازیک رد ۱۸ از محلول‎های آبی با استفاده از خاکستر پوست بادام زمینی"، مجلهطنینسلامت، 4(2)، 21-32.
باقرپور سرد صحرا، ف.، شریعتی نیا، ز.، شکرریز، ش.، و محمودی، ن.م.، (1394)، "سنتز نانوذرات مخلوط اکسیدهای فلزی لانتان ـ روی ـ آلومینات با روش احتراقی و تاثیرشان در رنگ‎بری رنگ‎زاهای اسید آبی 92 و راکتیو آبی"، علوم و فناوری رنگ، 9(2)، 145-157.
رضایی مفرد، م.ح.، میران زاده، م.ب.، پورقلی، م.، اکبری، ح.، و دهقانی، ر.، (1392)، "بررسی تأثیر روش‎های اکسیداسیون پیشرفته بر حذف رنگ از فاضلاب صنایع نساجی"، مجله علمی پژوهشی فیض دانشگاه علوم پزشکی کاشان، 17(1)، 32-39.
عبدالله زاده، ح.م، علیزاده، ب.، خسروی، د.، و فضل زاده، م.، (1395)، "بررسی کارایی نانورس اصلاح شده با EDTA در حذف هیومیک اسید از محلول‎های آبی"، مجلهدانشگاهعلومپزشکیمازندران، 26(139)، 111-125.
سمرقندی، م.ح.، نوری سپهر، م.، ضرابی، م.، نوروزی م.، شاهرخی، ا.، و امرائی، ف.، (1389)، "بررسی کارایی و مکانیسم حذف رنگ اسید بلاک 1 با استفاده از جاذب معدنی پامیس"،  فصلنامه سلامت و محیط زیست، 3(4)، 399-411.
علی‎دادی، ح.، کریمیان، ح.، بذرافشان، ا.، نجف پور،ع.ا.، و رافع، ش.، (1393)، "بررسی کارایی نانولوله کربن چند جداره و خاکستر حاصل از زائدات درخت خرما در حذف رنگ از فاضلاب نساجی"، مجله پژوهش در بهداشت محیط، 1(1)، 10-19.
غفوری، م.، نقی زاده، ع.، (1394)، "بررسی ایزوترم، سینتیک و ترمودینامیک فرآیند حذف اسید هیومیک توسط نانوکیتوزان از محیط‌های آبی"، دانشگاه علوم پزشکی بیرجند، 3(23)، 222-234.
قاجاریه، ع.، فریزاده، خ.، و حسین‎خانی، م.، (1396)، "استفاده از نانوذرات آهن در سنتز هیدروژل مهره‌های مغناطیسی جهت حذف رنگ‎زای بازیک آبی 159 از محیط‌های آبی"، مجله آب و فاضلاب، 28(5)، 12-21.
Abou-Gamra, Z.M., and Ahmed, M.A., (2015), “TiO2 nanoparticles for removal of malachite green dye from waste water”, Advances in Chemical Engineering and Science, 5(03), 373.
Ahmadi, S., Igwegbe, C.A., and Rahdar, S., (2019), “The application of thermally activated persulfate for degradation of Acid Blue 92 in aqueous solution”, International Journal of Industrial Chemistry, 10)3(, 249-260
Alizadeh, M., Mahvi, A.H., and Mansoorian, H.J., (2014), “The survey of electrocoagulation process for removal dye reactive orange 16 from aqueous solutions using sacrificial iron electrodes”, Iranian Journal of Health, Safety and Environment, 1(1), 1-8.
Balarak, D., Mandavi, Y., Bazrafshan, E. and Mahvi, A.H., (2016), “Kinetic, isotherms and thermodynamic modeling for adsorption of acid blue 92 (ab92) from aqueous solution by modified azolla filicoloides”, Fresenius Environmental Bulletin, 25(5), 1322-1331.
Bazrafshan, E., Kord Mostafapour, F., Rahdar, S., and Mahvi, A.H., (2015), “Equilibrium and thermodynamics studies for decolorization of Reactive Black 5 (RB5) by adsorption onto MWCNTs”, Desalination and Water Treatment, 54(8), 2241-2251.
Duan, J., and Su, B., (2014), “Removal characteristics of Cd (II) from acidic aqueous solution by modified steel-making slag”, Chemical Engineering Journal, 246, 160-167.
Kaur, H., and Kaur, R., (2014), “Removal of rhodamine-B dye from aqueous solution onto pigeon dropping: Adsorption, kinetic, equilibrium and thermodynamic studies”, Journal of Materials and Environmental Science, 5(6), 1830-1838.
Khalighi, S.R., Khosravi, N.M., Badii, K.H., and Yousefi, L.N., (2012), “Adsorption of acid blue 92 dye on modified diatomite by nickel oxide nanoparticles in aqueous solutions”, Progress in Color, Colorants and Coating, 5, 101-116.
Li, P., Lin, K., Fang, Z. and Wang, K., (2017), “Enhanced nitrate removal by novel bimetallic Fe/Ni nanoparticles supported on biochar”, Journal of Cleaner Production, 151, 21-33.
Osma, J.F., Saravia, V., Toca-Herrera, J.L., and Couto, S.R., (2007), “Sunflower seed shells: A novel and effective low-cost adsorbent for the removal of the diazo dye reactive black 5 from aqueous solutions”, Journal of Hazardous Materials, 147(3), 900-905.
Park, S.I., Lim, J.H., Kim, J.H., Yun, H.I., Roh, J.S., Kim, C.G., and Kim, C.O., (2004), “ Effects of surfactant on properties of magnetic fluids for biomedical application”, Physica Status Solidi (b), 241(7), 1662-1664.
Rahdar, S., Igwegbe, C.A., Ghasemi, M., and Ahmadi, S., (2019a), “Degradation of aniline by the combined process of ultrasound and hydrogen peroxide (US/H2O2)”, MethodsX, 6, 492-499.
Rahdar, S., Rahdar, A., Zafar, M.N., Shafqat, S.S., and Ahmadi, S., (2019b), “Synthesis and characterization of MgO supported Fe–Co–Mn nanoparticles with exceptionally high adsorption capacity for Rhodamine B dye”, Journal of Materials Research and Technology, 8(5), 3800-3810.
Rahdar, A., Rahdar, S., Ahmadi, S., and Fu, J., (2019c), “Adsorption of ciprofloxacin from aqueous environment by using synthesized nanoceria”, Ecological Chemistry and Engineering, 26(2), 299-311.
Shahmoradi, B., Maleki, A., and Byrappa, K., (2015), “Removal of disperse orange 25 using in situ surface-modified iron-doped TiO2 nanoparticles”, Desalination and Water Treatment, 53(13), 3615-3622.
Shanthi, P., Karthik, M., Venkatachalam, K.J.,  and Karthikeyan, S., (2014), “Adsorption of acid blue 92 from aqueous solution using an activated carbon prepared from sterculia quadrifida seed shell waste”, Journal of Water and Environmental Nanotechnology, 3(4), 96-104.
Srivastava, S., Sinha, R., and Roy, D., (2004), “Toxicological effects of malachite green”, Aquatic Toxicology, 66(3), 319-329.
Srivastava, V.C., Mall, I.D., and Mishra, I.M., (2006), “Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash”, Chemical Engineering Journal, 117(1), 79-91.
Tahir, S.S., and Rauf, N., (2006),” Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay”, Chemosphere, 63(11), 1842-1848.
Taimoory, S.M., Rahdar, A., Aliahmad, M., Sadeghfar, F., Hajinezhad, M.R., Jahantigh, M., Shahbazi, P., and Trant, J.F., (2018), “The synthesis and characterization of a magnetite nanoparticle with potent antibacterial activity and low mammalian toxicity”, Journal of Molecular Liquids,265, 96-104.