مروری بر کارایی راکتورهای زیستی دنیتریفیکاسیون در حذف نیترات از زهاب کشاورزی

نوع مقاله: مقالات علمی

نویسندگان

1 دانشجوی کارشناسی ارشد دانشگاه تهران

2 استادیار پردیس ابوریحان دانشگاه تهران

10.22112/jwwse.2019.153450.1116

چکیده

یکی از مهم­ترین مشکل­های سیستم­های زهکشی، آب‎شویی نیترات و ورود آن به منابع آب سطحی است. افزایش غلظت نیترات در منابع آب باعث ایجاد مشکلاتی برای انسان­ها و حیوان­ها می­شود. فرایند دنیتریفیکاسیون یکی از راه‎کارهای مناسب برای حذف نیترات از آب­های آلوده است. این فرایند در خاک­های کشاورزی به‎علت کمبود مواد کربنی با محدودیت مواجه است. تأمین کربن مورد نیاز در خاک باعث افزایش این فرایند و حذف بیشتر نیترات از محیط می­شود. استفاده از مواد آلی به‎عنوان ماده کربنی ارزان قیمت و قابل‎دسترس یکی از بهترین گزینه­ها برای این هدف است. در واقع راکتورهای زیستی دنیتریفیکاسیون یک تکنولوژی ساده و نسبتاً ارزان هستند که در آن­ها از منابع کربن برای تسهیل دنیتریفیکاسیون استفاده می­شود. شدت دنیتریفیکاسیون در راکتورهای زیستی به نوع منبع کربنی مورد استفاده، دما، اکسیژن محلول در آب، زمان ماند هیدرولیکی و پارامترهای هیدرولیکی بستگی دارد. مطالعات صورت‎گرفته نشان‎داده است که راکتورهای زیستی توانایی حذف تا 99 درصد از نیترات موجود در زهاب­های کشاورزی را دارند. طی سال‎های اخیر تحقیقات متعددی در زمینه استفاده از راکتورهای زیستی به‎منظور حذف نیترات و توانایی و چگونگی کاربرد آن‎ها انجام شده است. در این مقاله راکتورهای زیستی دنیتریفیکاسیون به‎عنوان یک روش برای حذف نیترات از زهاب کشاورزی مورد بررسی قرار می‎گیرند.

کلیدواژه‌ها


 

احمدپری، ه.، (1396)، "بررسی تأثیر سطح مقاطع هیدرولیکی مختلف حوضچه‌های دنیتریفیکاسیون در میزان حذف نیترات از زهاب کشاورزی"، پایان­نامه کارشناسی ارشد، گروه آبیاری و زهکشی، پردیس ابوریحان دانشگاه تهران، تهران.

تنگسیر، س.، (1396)، "تأثیر شوری آب آبیاری بر عملکرد دیوار دنیتریفیکاسیون کربنی در حذف نیترات زهاب زهکش‌های زیرزمینی"، رساله دکتری، گروه علوم مهندسی آب، دانشگاه شهید چمران اهواز، اهواز.

مقیمی، ن.، (1394)، "بررسی عملکرد باگاس نیشکر در کاهش نیترات خروجی از زهاب زهکش‎های زیرزمینی"، پایان­نامه کارشناسی ارشد، گروه علوم مهندسی آب، دانشگاه شهید چمران اهواز، اهواز.

هاشمی، م.، ناصری، ع.ع.، تکدستان، ا.، (1396)، "بررسی کارایی جاذب باگاس نیشکر در حذف نیترات از زهاب خروجی کشاورزی"، علوم و مهندسی آبیاری، 40(3)، 1-10.

هاشمی گرم­دره، س. ا.، (1390)، "بررسی عملکرد فیلتر­های کربنی در حذف نیترات از زه­آب زهکش­های زیرزمینی"، رساله دکتری، گروه آبیاری و زهکشی، دانشگاه صنعتی اصفهان، اصفهان.

Bassin, J.P., Kleerebezem, R., Rosado, A.S., van Loosdrecht, M.M., and Dezotti, M., (2012), “Effect of different operational conditions on biofilm development, nitrification, and nitrifying microbial population in moving-bed biofilm reactors”, Environmental Science and Technology, 46(3), 1546-1555.

Beckman, M., (2005), Nitrogen status and risk of nitrification in two clearcut areas in southwest Sweden, UPTEC, ISSN 1401‐576.

Bernet, N., Dangcong, P., Delgenès, J.P. and Moletta, R., (2001) “Nitrification at low oxygen concentration in biofilm reactor”, Journal of Environmental Engineering, 127(3), 266-271.

Boley, A., Mergaert, J., Muller, C., Lebrenz, H., Cnockaert, M.C., Müller, W.R., and Swings, J., (2003), “Denitrification and pesticide elimination in drinking water treatment with the biodegradable polymer poly (ϵ‐caprolactone) (PCL)”, Clean Soil, Air, Water, 31(3), 195-203.

Boley, A., Müller, W.R., and Haider, G., (2000), “Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems”, Aquacultural Engineering, 22(1), 75-85.

Brix, H., Arias, C.A., and Johansen, N.H., (2003), “Experiments in a two-stage constructed wetland system: Nitrification capacity and effects of recycling on nitrogen removal”, Wetlands-Nutrients, Metals and Mass Cycling, Netherlands, University of Leiden, pp. 237-258.

Bucco, S., Padoin, N., Netto, W. S., and Soares, H.M., (2014), “Drinking water decontamination by biological denitrification using fresh bamboo as inoculum source”, Bioprocess and Biosystems Engineering, 37(10), 2009-2017.

Calderer, M., Marti, V., De Pablo, J., Guivernau, M., Prenafeta-Boldú, F.X., and Viñas, M., (2014), “Effects of enhanced denitrification on hydrodynamics and microbial community structure in a soil column system”, Chemosphere, 111(1 Sep.), 112-119.

Cambardella, C.A., Moorman, T.B., Parkin, T.B., Karlen, D.L., Novak, J.M., Turco, R.F., and Konopka, A.E., (1994), “Field-scale variability of soil properties in central Iowa soils”, Soil Science Society of America Journal, 58(5), 1501-1511.

Cameron, S.G., and Schipper, L.A., (2011), “Evaluation of passive solar heating and alternative flow regimes on nitrate removal in denitrification beds”, Ecological Engineering, 37(8), 1195-1204.

Cameron, S.G., and Schipper, L.A., (2010), “Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds”, Ecological Engineering, 36(11), 1588-1595.

Cameron, S.G., and Schipper, L.A., (2012), “Hydraulic properties, hydraulic efficiency and nitrate removal of organic carbon media for use in denitrification beds”, Ecological Engineering, 41(1 Apr.), 1-7.

Chen, J., Han, Y., Wang, Y., Gong, B., Zhou, J., and Qing, X., (2016) “Start-up and microbial communities of a simultaneous nitrogen removal system for high salinity and high nitrogen organic wastewater via heterotrophic nitrification”, Bioresource Technology, 216(1 Sep.), 196-202.

Christianson, L., Bhandari, A., Helmers, M., Kult, K., Sutphin, T., and Wolf, R., (2012), “Performance evaluation of four field-scale agricultural drainage denitrification bioreactors in Iowa”, Transactions of the ASABE, 55(6), 2163-2174.

Christianson, L., Christianson, R., Helmers, M., Pederson, C., and Bhandari, A., (2013), “Modeling and calibration of drainage denitrification bioreactor design criteria”, Journal of Irrigation and Drainage Engineering, 139(9), 699-709.

Christianson, L.E., Bhandari, A., and Helmers, M.J., (2011), “Pilot-scale evaluation of denitrification drainage bioreactors: Reactor geometry and performance”, Journal of Environmental Engineering, 137(4), 213-220.

Damaraju, S., Singh, U.K., Sreekanth, D., and Bhandari, A., (2015), “Denitrification in biofilm configured horizontal flow woodchip bioreactor: Effect of hydraulic retention time and biomass growth”, Ecohydrology and Hydrobiology, 15(1), 39-48.

David, M.B., Gentry, L.E., Cooke, R.A., and Herbstritt, S.M. (2016), “Temperature and substrate control woodchip bioreactor performance in reducing tile nitrate loads in east-central Illinois”, Journal of environmental quality, 45(3), 822-829.

Della Rocca, C., Belgiorno, V., and Meriç, S., (2007), “Overview of in-situ applicable nitrate removal processes”, Desalination, 204(1-3), 46-62".

Deng, L., Guo, W., Ngo, H.H., Zhang, X., Wang, X.C., Zhang, Q., and Chen, R., (2016), “New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor–membrane bioreactor system”, Bioresource Technology, 208(1 Mar.), 87-93.

Di Capua, F., Papirio, S., Lens, P.N., and Esposito, G., (2015), “Chemolithotrophic denitrification in biofilm reactors”, Chemical Engineering Journal, 280(15 Nov.), 643-657.

Dodla, S.K., Wang, J.J., DeLaune, R.D., and Cook, R.L., (2008), “Denitrification potential and its relation to organic carbon quality in three coastal wetland soils”, Science of the Total Environment, 407(1), 471-480.

Elgood, Z., Robertson, W.D., Schiff, S.L., and Elgood, R., (2010), “Nitrate removal and greenhouse gas production in a stream-bed denitrifying bioreactor”, Ecological Engineering, 36(11), 1575-1580.

Ghane, E., Fausey, N. R., and Brown, L.C. (2014), “Non-darcy flow of water through woodchip media”, Journal of Hydrology, 519(27 Nov.), 3400-3409.

Ghane, E., Fausey, N.R., and Brown, L.C. (2015), “Modeling nitrate removal in a denitrification bed”, Water Research, 71(15 Mar.), 294-305.

Ghane, E., Feyereisen, G.W., Rosen, C.J., Sadowsky, M.J., and Christianson, L.E., (2016), “Performance of denitrification beds for removing nitrate from drainage water at cold temperatures”, 10th International Drainage Symposium Conference, 6-9 September, Minneapolis, Minnesota, pp. 1-4, American Society of Agricultural and Biological Engineers.

Gibert, O., Pomierny, S., Rowe, I., and Kalin, R.M., (2008), “Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB)”, Bioresource Technology, 99(16), 7587-7596.

Gilchrist, M., Winyard, P.G., and Benjamin, N., (2010), “Dietary nitrate–good or bad?”, Nitric Oxide, 22(2), 104-109.

Greenan, C.M., Moorman, T.B., Kaspar, T.C., Parkin, T.B., and Jaynes, D.B., (2006), “Comparing carbon substrates for denitrification of subsurface drainage water”, Journal of Environmental Quality, 35(3), 824-829.

Hartz, T., Smith, R., Cahn, M., Bottoms, T., Bustamante, S., Tourte, L., and Coletti, L., (2017), “Wood chip denitrification bioreactors can reduce nitrate in tile drainage”, California Agriculture, 71(1), 41-47.

Hashemi, S.E., Heidarpour, M., and Mostafazadeh-Fard, B., (2011), “Nitrate removal using different carbon substrates in a laboratory model”, Water Science and Technology, 63(11), 2700-2706.

Healy, M.G., Ibrahim, T.G., Lanigan, G.J., Serrenho, A.J., and Fenton, O., (2012), “Nitrate removal rate, efficiency and pollution swapping potential of different organic carbon media in laboratory denitrification bioreactors”, Ecological Engineering, 40(1 Mar.), 198-209.

Healy, M.G., Rodgers, M., and Mulqueen, J., (2006), “Denitrification of a nitrate-rich synthetic wastewater using various wood-based media materials”, Journal of Environmental Science and Health Part A, 41(5), 779-788.

Herbstritt, S., (2014), “Environmental tradeoffs of denitrifying woodchip bioreactors”, Graduate Dissertations and Theses at Illinois.www.ideals.illinois.edu/handle/2142/49622.

Hernandez-Apaolaza, L., and Guerrero, F., (2008), “Comparison between pine bark and coconut husk sorption capacity of metals and nitrate when mixed with sewage sludge”, Bioresource Technology, 99(6), 1544-1548.

Hill, A.R., and Cardaci, M., (2004), “Denitrification and organic carbon availability in riparian wetland soils and subsurface sediments”, Soil Science Society of America Journal, 68(1), 320-325.

Hoover, N.L., Bhandari, A., Soupir, M.L., and Moorman, T.B., (2016), “Woodchip denitrification bioreactors: Impact of temperature and hydraulic retention time on nitrate removal”, Journal of Environmental Quality, 45(3), 803-812.

Jackson, C.R., and Vallaire, S.C., (2009), “Effects of salinity and nutrients on microbial assemblages in Louisiana wetland sediments”, Wetlands, 29(1), 277-287.

Jafari, S.J., Moussavi, G. and Yaghmaeian, K., (2015), “High-rate biological denitrification in the cyclic rotating-bed biological reactor: effect of, nitrate concentration and salinity and the phylogenetic analysis of denitrifiers”, Bioresource Technology, 197(1 Dec.), 482-488.

Jaynes, D.B., and Thorp, K., (2008), “Potential water quality impact of drainage water management in the Midwest cornbelt”, ASABE Annual Meeting, Providence, RI. Paper No. 084566.

Kristensen, G.H., and Jepsen, S.E., (1991), “Biological Denitrification of Waste Water from Wet Lime–Gypsum Flue Gas Desulphurization Plants”, Water Science and Technology, 23(4-6), 691-700.

Lepine, C., Christianson, L., Sharrer, K. and Summerfelt, S., (2016), “Optimizing hydraulic retention times in denitrifying woodchip bioreactors treating recirculating aquaculture system wastewater”, Journal of Environmental Quality, 45(3), 813-821.

Li, R., Feng, C., Chen, N., Zhang, B., Hao, C., Peng, T., and Zhu, X., (2014), “A bench-scale denitrification wall for simulating the in-situ treatment of nitrate-contaminated groundwater”, Ecological Engineering, 73(1 Dec.), 536-544.

Li, R., Feng, C., Xi, B., Chen, N., Jiang, Y., Zhao, Y., and Zhao, B., (2017), “Nitrate removal efficiency of a mixotrophic denitrification wall for nitrate-polluted groundwater in situ remediation”, Ecological Engineering, 106(1 Drc.), 523-531.

Li, T., Li, W., Feng, C., and Hu, W., (2017), “In-situ biological denitrification using pretreated maize stalks as carbon source for nitrate-contaminated groundwater remediation”, Water Science and Technology: Water Supply, 17(1 Sep.), 1-9.

Liang, X., Lin, L., Ye, Y., Gu, J., Wang, Z., Xu, L., and Tian, G., (2015), “Nutrient removal efficiency in a rice-straw denitrifying bioreactor”, Bioresource Technology, 198(1 Dec.), 746-754.

Lin, Y.F., Jing, S.R., Lee, D.Y., Chang, Y.F. and Shih, K.C., (2008), “Nitrate removal from groundwater using constructed wetlands under various hydraulic loading rates”, Bioresource Technology, 99(16), 7504-7513.

Long, L.M., Schipper, L.A. and Bruesewitz, D.A., (2011), “Long-term nitrate removal in a denitrification wall”, Agriculture, Ecosystems and Environment, 140(3), 514-520.

Luo, G., Li, L., Liu, Q., Xu, G., and Tan, H., (2014), “Effect of dissolved oxygen on heterotrophic denitrification using poly (butylene succinate) as the carbon source and biofilm carrier”, Bioresource Technology, 171(1 Nov.), 152-158.

McCleaf, P.R. and Schroeder, E.D., (1995), “Denitrification using a membrane-immobilized biofilm”, Journal of the American Water Works Association, 87(3), 77-86.

Moorman, T.B., Parkin, T.B., Kaspar, T.C. and Jaynes, D.B., (2010), “Denitrification activity, wood loss, and N 2 O emissions over 9 years from a wood chip bioreactor”, Ecological Engineering, 36(11), 1567-1574.

Moussavi, G., Jafari, S.J. and Yaghmaeian, K., (2015), “Enhanced biological denitrification in the cyclic rotating bed reactor with catechol as carbon source”, Bioresource Technology, 189(1 Aug.), 266-272.

Nordström, A., and Herbert, R.B., (2017), “Denitrification in a low-temperature bioreactor system at two different hydraulic residence times: laboratory column studies”, Environmental Technology, 38(11), 1362-1375.

Reising, A.R., and Schroeder, E.D., (1996), “Denitrification incorporating microporous membranes”, Journal of Environmental Engineering, 122(7), 599-604.

Rietz, D.N., and Haynes, R.J., (2003), “Effects of irrigation-induced salinity and sodicity on soil microbial activity”, Soil Biology and Biochemistry, 35(6), 845-854.

Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W. and Bemment, C.D., (2008), “Nitrate attenuation in groundwater: a review of biogeochemical controlling processes, Water Research, 42(16), 4215-4232.

Robertson, L.A., and Kuenen, J.G., (1984), “Aerobic denitrification - old wine in new bottles”, Groundwater Monitoring and Remediation,50(5-6), 525-544. 

Robertson, W.D., Ptacek, C.J., and Brown, S.J., (2007), “Geochemical and hydrogeological impacts of a wood particle barrier treating nitrate and perchlorate in ground water”, Groundwater Monitoring and Remediation, 27(2), 85-95.

Robertson, W.D. and Cherry, J.A., (1995), “In situ denitrification of septic‐system nitrate using reactive porous media barriers: field trials”, Groundwater, 33(1), 99-111.

Robertson, W.D. and Merkley, L.C., (2009), “In-stream bioreactor for agricultural nitrate treatment”, ”,, 38(1), 230-237.

Robertson, W.D. and Merkley, L.C., (2009), “In-stream bioreactor for agricultural nitrate treatment”, Journal of Environmental Quality, 38(1), 230-237.

Robertson, W.D., Ford, G.I. and Lombardo, P.S., (2005), “Wood-based filter for nitrate removal in septic systems”, Transactions of the ASAE, 48(1), 121-128.

Robertson, W.D., Vogan, J.L. and Lombardo, P.S., (2008), “Nitrate removal rates in a 15‐year‐old permeable reactive barrier treating septic system nitrate”, Groundwater Monitoring and Remediation, 28(3), 65-72.

Schipper, L., (2012), “Denitrifying bioreactors: A synthesis of removal rates, controls and utility”, Workshop at the 2012 Land Grant and Sea Grant National Water Conference, University of Waikato, New Zealand.

Schipper, L., (2013), https://www.sciencelearn.org.nz/images/886-denitrification-wall-diagram

Schipper, L.A., and McGill, A., (2008), “Nitrogen transformation in a denitrification layer irrigated with dairy factory effluent”, Water Research, 42(10), 2457-2464.

Schipper, L.A., Robertson, W.D., Gold, A.J., Jaynes, D.B. and Cameron, S.C., (2010), “Denitrifying bioreactors—an approach for reducing nitrate loads to receiving waters”, Ecological Engineering, 36(11), 1532-1543.

Tangsir, S., Moazed, H., Naseri, A.A., Garmdareh, S.E.H., Broumand-nasab, S., and Bhatnagar, A., (2017), “Investigation on the performance of sugarcane bagasse as a new carbon source in two hydraulic dimensions of denitrification beds”, Journal of Cleaner Production, 140(1), 1176-1181.

Thompson, S.P., Paerl, H.W., and Go, M.C., (1995), “Seasonal patterns of nitrification and denitrification in a natural and a restored salt marsh”, Estuaries, 18(2), 399-408.

Ueda, T., Shinogi, Y., and Yamaoka, M., (2006), “Biological nitrate removal using sugar-industry wastes”, Paddy and Water Environment, 4(3), 139-144.

Van Driel, P.W., Robertson, W.D., and Merkley, L.C., (2006), “Denitrification of agricultural drainage using wood-based reactors”, Transactions of the ASABE, 49(2), 565-573.

Van Rijn, J., Tal, Y. and Schreier, H.J., (2006), “Denitrification in recirculating systems: Theory and applications”, Aquacultural Engineering, 34(3), 364-376.

Wang, J. and Chu, L., (2016), “Biological nitrate removal from water and wastewater by solid-phase denitrification process”, Biotechnology Advances, 34(6), 1103-1112.

Wang, Q., Feng, C., Zhao, Y. and Hao, C., (2009), “Denitrification of nitrate contaminated groundwater with a fiber-based biofilm reactor”, Bioresource Technology, 100(7), 2223-2227.

Warneke, S., Schipper, L.A., Matiasek, M.G., Scow, K.M., Cameron, S., Bruesewitz, D.A., and McDonald, I.R., (2011), “Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds”, Water Research, 45(17), 5463-5475.

Warneke, S., Schipper, L.A., Bruesewitz, D.A., and Baisden, W.T., (2011), “A comparison of different approaches for measuring denitrification rates in a nitrate removing bioreactor”, Water Research, 45(14), 4141-4151.

Wu, Q., Zheng, C., Zhang, J., and Zhang, F., (2017), “Nitrate removal by a permeable reactive barrier of Fe0: A model-based evaluation”, Journal of Earth Science, 28(3), 447-456.

Wu, W., Yang, L., and Wang, J., (2013), “Denitrification performance and microbial diversity in a packed-bed bioreactor using PCL as carbon source and biofilm carrier”, Applied Microbiology and Biotechnology, 97(6), 2725-2733.

Wu, W., Yang, L., and Wang, J., (2013), “Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor”, Environmental Science and Pollution Research, 20(1), 333-339.

Wu, Y., Tam, N.F.Y., and Wong, M.H., (2008), “Effects of salinity on treatment of municipal wastewater by constructed mangrove wetland microcosms”, Marine Pollution Bulletin, 57(6), 727-734.

Yuan, B.C., Li, Z.Z., Liu, H., Gao, M., and Zhang, Y.Y., (2007), “Microbial biomass and activity in salt affected soils under arid conditions”, Applied Soil Ecology, 35(2), 319-328.

Zhao, W., Wang, Y., Liu, S., Pan, M., Yang, J., and Chen, S., (2013), “Denitrification activities and N2O production under salt stress with varying COD/N ratios and terminal electron acceptors”, Chemical Engineering Journal, 215(15 Jan.), 252-260.