بهینه‌سازی مصرف انرژی در ایستگاه‌های پمپاژ با استفاده از ابزار Darwin Scheduler

نوع مقاله: مقالات علمی

نویسندگان

1 گروه آب، دانشکده کشاورزی، دانشگاه فردوسی، مشهد، ایران

2 مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه، ایران

چکیده

امروزه در شبکه‌های توزیع آب شهری علاوه بر انجام طراحی بهینه هیدرولیکی، بهینه‌سازی مصرف انرژی در ایستگاه‌های پمپاژ در راس الزامات محققان قرار گرفته است. با توجه به اینکه هزینه‌های انرژی سهم بالایی از هزینه بهره برداری از شبکه را شامل می‌شود، در این پژوهش به کمک ابزار Darwin Scheduler در نرم افزار WaterGEMS V8i نسبت به بهینه‌سازی با هدف کمینه کردن هزینه انرژی مصرفی روزانه یک ایستگاه پمپاژ شامل پنج عدد پمپ‌ موازی در یک شبکه توزیع آب شهری، به کمک الگوریتم ژنتیک ساده (SGA) و الگوریتم ژنتیک با آشفتگی سریع(FMGA) اقدام شده است. قیود هیدرولیکی شامل حداقل و حداکثر فشار در هر گره، سرعت حداکثری در هر لوله و تعداد دفعات خاموش و روشن شدن اقتصادی پمپ‌ها می باشد که در نتیجه کاهش هزینه‌های انرژی با استفاده از الگوریتم های SGA و FMGA به ترتیب به میزان ‌ 15 و 10 درصد با اعمال تعرفه برق مصوب، نسبت به عملکرد پمپ ها بدون اعمال بهینه سازی حاصل گردید.

کلیدواژه‌ها


 

Bhave, P.R. and Sonak, V.V., (1992), “A critical study of the linear programming gradient method for optimal design of water supply networks”, Water Resources Research, 28(6), 1577-1584.

Coelho, B., Tavares, A. and Andrade-Campos, A., (2012), “Analysis of diverse optimisation algorithms for pump scheduling in water supply systems”, Proceedings of 3rd International Conference on Engineering Optimization (EngOpt2012), July, Rio de Janeiro, Brazil.

Cunha, M. and Sousa, J., (1999), “Water distribution network design optimization: simulated annealing approach”, Journal of Water Resources Planning and Management, 125(4), 215-221.

Eusuff, M.M. and Lansey, K.E., (2003), “Optimization of water distribution network design using the shuffled frog leaping algorithm”, Journal of Water Resources Planning and Management, 129(3), 210-225.

Hashemi, S.S., Tabesh, M. and Ataeekia, B., (2014), “Ant colony optimization of pumping schedule to minimize the energy cost using variable speed pump in water distribution networks’, Urban Water Journal, 11(5), 334-347.

Jacoby, S.L., (1968), “Design of optimal hydraulic networks”, Journal of the Hydraulics Division, 94(3), 641-662.

Kadu, M.S., Rajesh, G. and Bhave, P.R., (2008), “Optimal design of water networks using a modified genetic algorithm with reduction in search space”, Journal of Water Resources Planning and Management, 134(2), 147-160.

Kessler, A. and Shamir, U., (1989), “Analysis of linear programming gradient method for optimal design of water supply networks”, Water Resources Research, 25(7), 1469-1480.

Keedwell, E. and Khu, S.-Th., (2005), “A hybrid genetic algorithm for the design of water distribution network”, Engineering Applications of Artificial Intelligence, 18, 461-472.

Keedwell, E. and Khu, ST., (2006), “Novel cellular automata approach to optimal water distribution network design”, Journal of Computing in Civil Engineering, 20(1), 49-56.

Mackle, G., Savic, G.A. and Walters, G.A., (1995), “Application of genetic algorithms to pump scheduling for water supply”, First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications (GALESIA), September 12-14, IET, 400-405.

Maier, H.R., Simpson, A.R., Zecchin, A.C., Foong, W.K., Phang, K.Y., Seah, H.Y. and Tan, C.L., (2003), “Ant colony optimization for design of water distribution systems”, Journal of Water Resources Planning and Management, 129(3), 200-209.

Mala-Jetmarova, H., Barton, A. and Bagirov, A., (2014), “Exploration of the trade-offs between water quality and pumping costs in optimal operation of regional multiquality water distribution systems”, Journal of Water Resources Planning and Management, 141(6), 342-368.

Menke, R., Abraham, E., Parpas, P. and Stoianov, I., (2015), “Approximation of system components for pump scheduling optimisation”, Procedia Engineering, 119, 1059-1068.

Moghaddam, A., Alizadeh, A., Ziaei, A., Farid Hosseini, A. and Falah Heravi, D., (2014), “Convergence rate improvement in water distribution network optimization using Fast Messy Genetic Algorithm (FMGA)” Journal of Water and Soil (Agricultural Sciences and Technology), 28(1), 22-34.

Neelakantan, T.R. and Suribabu, C.R., (2005), “Optimal design of water distribution networks by a modified genetic algorithm”, Journal of Civil Environmental Engineering, 1 (1), 20-34.

Price, E. and Ostfeld, A., (2016), “Optimal pump scheduling water distribution systems using graph theory under hydraulic and chlorine constraints”, Journal of Water Resources Planning and Management, 142(10), 885-900.

Quindry, G., Brill, E.D. and Lienman, J., (1979), “Water distribution system design criteria”, Department of Civil Engineering, University of Illinois at Urbana-Champaign, Urbana, IL.

Savic, D.A. and Walters, GA., (1997), “Genetic algorithms for least cost design of water distribution networks”, Journal of Water Resources Planning and Management, 123(2), 67-77.

Suribabu, C.R., and Neelakantan, T.R., (2006), “Design of water distribution networks using particle swarm optimization”, Urban Water Journal, 3(2), 111-120.

Vairavamoorthy, K. and Ali, M., (2005), “Pipe index vector, a method to improve genetic-algorithm-based pipe optimization”, Journal of Hydraulic Engineering, 131(12), 1117-1125.

Vairavamoorthy, K. and Ali, M., (2000), “Optimal design of water distribution systems using genetic algorithms”, ComputerAided Civil and Infrastructure Engineering, 15(2), 374-382.

Varma, K.V., Narasimhan, S. and Bhallamudi, S.M., (1997), “Optimal design of water distribution systems using an NLP method”, Journal of Environmental Engineering, 123(4), 381-388.

WaterGEMS User’s Manual, (2005), Bentley Systems Inc., http://docs.bentley.com/.

Zecchin, A.C., Maier, H.C., Simpson, A.R., Leonard, M. and Nixon, J.B., (2007), “Ant colony optimization applied to water distribution system design: comparative study of five algorithms”, Journal of Water Resources Planning and Management, 133(1), 87-92.