مروری بر عوامل موثر در روش فقر و غنا برای تولید پلاستیک زیستی از لجن مازاد تصفیه بیولوژیکی فاضلاب

نوع مقاله : مقاله مروری

نویسندگان

1 شیمی کاربردی، دانشکده نفت و گاز گچساان، دانشگاه یاسوج، کهگیلویه و بویر احمد، ایران

2 گروه شیمی کاربردی، دانشکده شیمی، دانشگاه رازی، کرمانشاه، ایران

3 استاد، گروه شیمی کاربردی، دانشکده شیمی، دانشگاه رازی، کرمانشاه، ایران

4 دانشجوی کارشناسی، گروه شیمی کاربردی، دانشکده نفت و گاز گچساران ، دانشگاه یاسوج ، کهگیلویه و بویر احمد ، ایران

10.22112/jwwse.2020.230356.1207

چکیده

با توجه به کاربرد روز افزون مواد پلاستیکی در زندگی روزمره انسان‎ها و مشکلاتی که برای محیط‎زیست ایجاد می‎کنند محققان تلاش کردند جایگزین زیست تخریب‎پذیری را برای پلاستیک‎های نفتی معرفی کنند. زیست تخریب‎ناپذیر بودن پلاستیک‎های سنتی به‎دلیل بزرگ و طویل بودن بیش از حد مولکول‎های پلیمری و وجود اتصالات محکم بین آن‎ها است که در نهایت شکسته شدنشان توسط میکروارگانیسم‎ها را بسیار مشکل و حتی غیرممکن می‎سازد. اما پلاستیک‎های زیست­ تخریب­پذیر به‎سادگی توسط فعالیت موجودات زنده به واحد­های سازنده خود تجزیه شده و در محیط باقی نمی‎ماند. پلی هیدروکسی آلکونات‎ها (PHA)1 از جمله پلیمرهای زیست تخریب‎پذیری هستند که در سال‎های اخیر موردتوجه قرار گرفته‎اند. PHAها ترکیبات پلی استری هستند که توسط میکروارگانیسم‎ها تحت شرایط ویژه سنتز می‎شوند. یکی از روش‎های تولید PHA از باکتری‎ها روش غنا و فقر است. در این روش از یک بیوراکتور با جریان ورودی و خروجی منقطع برای تامین رژیم غنا و فقر2 استفاده می‎شود تا میکروارگانیسم‎‎‎هایی که توانایی ذخیره PHA دارند بتوانند در رقابت با سایر میکروارگانیسم‎ها غالب شوند و در نتیجه حداکثر میزان PHA از محیط کشت حاصل شود. در این مقاله مروری، روش فقر و غنا برای تولید PHA و عوامل موثر بر آن شامل نوع خوراک، نسبت غنا به فقر، نسبت غذا به میکروارگانیسم، غلظت اکسیژن محلول و مواد مغذی مورد مطالعه قرارگرفته است.
 

کلیدواژه‌ها


 
عروجی، ن.، تکدستان، ع.، و کریمی، ف.، (1397)، "اثر غلظت پارانیتروفنل موجود در فاضلاب بر کارایی فرایند تصفیه بیولوژیکی هوازی و میزان لجن مازاد دفعی"، علوم و مهندسی آب و فاضلاب، 3(3)، 17-28.
یحیی، چ.، و سمیه، ا.، (1397)، "ارزیابی خصوصیات فیزیکی، شیمیایی و بیولوژیک پساب تصفیه‎خانه فاضلاب شهری تربت حیدریه جهت مصارف زراعی"، پژوهش در بهداشت محیط، 3(4)، 227-236.
Ahmadi, F., Zinatizadeh, A., Asadi, A., and Younesi,H., (2019), "Influence of different cculture selection methods on polyhydroxyalkanoate production at short-term biomass enrichment", International Journal of Engineering, 32(2), 184-192.
Ahmadi, F., Zinatizadeh, A., and Asadi, A., (2020), "The effect of different operational strategies on polyhydroxyalkanoates (PHAs) production at short-term biomass enrichment", Journal of Environmental Chemical Engineering, 8(3), 301-315.
Albuquerque, M., Eiroa, M., Torres, C., Nunes, B., and Reis, M., (2007), "Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses", Journal of Biotechnology,130(4), 411-421.
Albuquerque, M., Martinao, V., Pollet, E., Averous, L., and Reis, M., (2011), "Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: Effect of substrate composition and feeding regime on PHA productivity, composition and properties", Journal of Biotechnology, 151(1), 66-76.
Albuquerque, M., Torres, C., and Reis, M., (2010), "Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: Effect of the influent substrate concentration on culture selection", Water Research, 44 (11), 3419-3433.
Albuquerque, M.G., Carvalho, G., Kragelund, C., Silva, A.F., Crespo, M.T.B., Reis, M.A., and Nielsen, P.H., (2013), "Link between microbial composition and carbon substrate-uptake preferences in a PHA-storing community", The ISME Journal, 7(1), 1-12.
Amini, M., Yousefi-Massumabad, H., Yoounesi, H., Abyar, H., and ahramifar, N., (2020), "Production of the polyhydroxyalkanoate biopolymer by Cupriavidus necator using beer brewery wastewater containing maltose as a primary carbon source", Journal of Environmental Chemical Enginnering, 8(1), 103588.
Basak, B., Ince, O., Artan, N., Yagci, N., and Ince, B.K., (2011), "Effect of nitrogen limitation on enrichment of activated sludge for PHA production", Bioprocess and Biosystems Engineering, 34(8), 1007-1016.
Beccari, M., Bertin, L., Dionsi, D., Fava, F., Lampis, S., Majone, M., Valentino, F., Vallini, G., and Villsno, M., (2009), "Exploiting olive oil mill effluents as a renewable resource for production of biodegradable polymers through a combined anaerobic–aerobic process", Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 84(6), 901-908.
Ben, M., Mato, T., Lopez, A.,Vila, M., Kennes, C., and Veiga, M., (2011), "Bioplastic production using wood mill effluents as feedstock", Water Science and Technology, 63 (6), 1196-1202.
Bengtsson, S., Werker, A., and Welander, T., (2008), "Production of polyhydroxyalkanoates by glycogen accumulating organisms treating a paper mill wastewater", Water Science and Technology, 58(2), 323-330.
Bernat, K., Wojnoeska-Baryla, I., and Dobrzynska, A., (2008), "Denitrification with endogenous carbon source at low C/N and its effect on P (3HB) accumulation", Bioresource Technology, 99(7), 2410-2418.
Biros, Y., Cokgor, E.U., Yagci, N., Pala-Ozkok, I., Cakar, Z.P., Sozen, S., and Orhon, D., (2014), "Effect of acetate to biomass ratio on simultaneous polyhydroxybutyrate generation and direct microbial growth in fast growing microbial culture", Bioresource Technology, 171. 314-322.
Carta, F., Beun, J., Van Loosdrecht, M., and Heijnen, J., (2001), "Simultaneous storage and degradation of PHB and glycogen in activated sludge cultures", Water Research, 35(11), 2693-2701.
Cavailie, L.,Grousseau, E., Pocquet, M., Lepuple, A.S., Uribelarrea, J.L., Hernandez-Raqet, G., and Paul, E., (2013), "Polyhydroxybutyrate production by direct use of waste activated sludge in phosphorus-limited fed-batch culture", Bioresource Technology, 149(1), 301-309.
Chen, Z., Huang, L., Wen, Q., Zhang, H., and Guo, Z., (2017), "Effects of sludge retention time, carbon and initial biomass concentrations on selection process: From activated sludge to polyhydroxyalkanoate accumulating cultures", Journal of Environmental Science, 52(1), 84-76.
Ciggin, A.S., Orhon, D., Rossetti, S., and Majone, M., (2011), "Short-term and long-term effects on carbon storage of pulse feeding on acclimated or unacclimated activated sludge", Water Research, 45(10), 3119-3128.
Ciggin, A.S., Rossetti, S., Majone, M., and Orhon, D., (2013). "Extent of intracellular storage in single and dual substrate systems under pulse feeding",  Environmental Science and Pollution Research, 20(1), 1225-1238.
Coats, E.R., Vandevoort, K.E., Darby, J.L., and Loge, F.J., (2011), "Toward polyhydroxyalkanoate production concurrent with municipal wastewater treatment in a sequencing batch reactor system", Journal of Environmental Engineering, 137(1), 46-54.
Dias, J.M., Lemos, P.C., Serafim, L.S., Oliveira, C., Eiroa, M., Albuquerque, M.G., Ramos, A.M., Oliveira, R., and Reis, M.A., (2006), "Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: From the substrate to the final product", Macromolecular Bioscience, 6(11), 885-906.
Dionisi, D., Beccari, M., Digregorio, S., Majone, M., Parini, M.P., and Vallini, G., (2005a), "Storage of biodegradable polymers by an enriched microbial community in a sequencing batch reactor operated at high organic load rate", Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 80(1), 1306-1318.
Dionisi, D., Carucci, G., Parini, M. P., Riccardi, C., Majone, M., and Carrasco, F., (2005b), "Olive oil mill effluents as a feedstock for production of biodegradable polymers", Water Research, 39(10), 2076-2084.
Dionisi, D., Majone, M., Papa, V., and Beccari, M., (2004), "Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding", Biotechnology and Bioengineering, 85(6), 569-579.
Dionisi, D., Majone, M., Vallini, G., Digregorio, S., and Beccari, M., (2006), "Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a sequencing batch reactor", Biotechnology and Bioengineering, 93(1), 76-88.
Dionisi, D., Majone, M., Vallini, G., Digregorio, S., and Beccari, M., (2007), "Effect of the length of the cycle on biodegradable polymer production and microbial community selection in a sequencing batch reactor", Biotechnology Progress, 23(5), 1064-1073.
Farghaly, A., Enitan, A. M., Kumari, S., Bux, F., and Tawfik, A., (2017), "Polyhydroxyalkanoates production from fermented paperboard mill wastewater using acetate-enriched bacteria", Clean Technologies and Environmental Policy, 19(4), 935-947.
Freches, A., and Lemos, P.C., (2017), "Microbial selection strategies for polyhydroxyalkanoates production from crude glycerol: effect of OLR and cycle length", New Biotechnology, 39(part A), 22-28.
Guo, Z., Chen, Z., Wen, Q., Huang, L., Bakke, R., and Du, M., (2016), "Strategy to reduce the acclimation period for enrichment of PHA accumulating cultures", Desalination and Water Treatment, 57(60), 29286-29294.
Gurieff, N., (2007). "Production of biodegradable polyhydroxyalkanoate polymers using advanced biological        wastewater treatment process technology. Ph.D. Thesis, School of Engineering, The University of Queensland.
Ince, O., Basak, B., Ince, B.K., Cetecioglu, Z., Celikkol, S., and Kolukirik, M., (2012), "Effect of nitrogen deficiency during SBR operation on PHA storage and microbial diversity", Environmental Technology, 33(16), 1827-1837.
Jiang, Y., Marang, L., Kleerebezem, R., Muyzer, G., and Van Looedrecht, M.C., (2011), "Effect of temperature and cycle length on microbial competition in PHB-producing sequencing batch reactor", The ISME Journal, 5(5), 896-907.
Johnson, K., Jiang, Y., Kleerebezem, R., Muyzer, G., and Van Looedrecht, M.C., (2009), "Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity", Biomacromolecules, 10(4), 670-676.
Karahan, O., Orhon, D., and Van Looedrecht, M.C., (2008), "Simultaneous storage and utilization of polyhydroxyalkanoates and glycogen under aerobic conditions", Water Science and Technology, 58(4), 945-951.
Kedia, G., Passanha, P., Dinsdale, R.M., Gumy, A.J., Esteves, S.R., and Engineering, B., (2014), " Evaluation of feeding regimes to enhance PHA production using acetic and butyric acids by a pure culture of Cupriavidus necator", Biotechnology and Bioprocess Enginnering, 19(1), 989-995.
Korkakaki, E., Mulders, M., Veeken, A., Rozendal, R., Van Looedrecht, M. C., and Kleerebezem, R., (2016), "PHA production from the organic fraction of municipal solid waste (OFMSW): Overcoming the inhibitory matrix", Water Research, 96(6), 74-83.
Liu, C., Liu, D., Qi, Y., Zhang, Y., Liu, X., and Zhao, M., (2016), "The effect of anaerobic–aerobic and feast–famine cultivation pattern on bacterial diversity during poly-β-hydroxybutyrate production from domestic sewage sludge", Environmental Science and Pollution Research, 23(13), 12966-12975.
Liu, H.Y., Hall, P.V., Darby, J.L., Coats, E.R., Green, P.G., Thompson, D.E., and LOGE, F.J., (2008), "Production of polyhydroxyalkanoate during treatment of tomato cannery wastewater", Water Environment Research, 80(4), 367-372
Liu, Z., Wang, Y., He, N., Huang, J., Zhu, K., Shao, W., Wang, H., Yuan, W., and Li, Q., (2011), "Optimization of polyhydroxybutyrate (PHB) production by excess activated sludge and microbial community analysis", Journal of Hazardous Materials, 185(1), 8-16.
Majone, M., Beccari, M., Digregorio, S., Dionisi, D., and Vallini, G., (2006), "Enrichment of activated sludge in a sequencing batch reactor for polyhydroxyalkanoate production", Water Science and Technology, 54(1), 119-128.
Marang., L., Jiang, Y., Van Looedrecht, M.C., and Kleerebezem, R., (2013), " Butyrate as preferred substrate for polyhydroxybutyrate production", Bioresource Technology, 142(1), 232-239.
Mddin, M., Ujang, Z., Van Looedrecht, M.C., Ahmad, A., and Sairan, M., (2006), "Optimization of nitrogen and phosphorus limitation for better biodegradable plastic production and organic removal using single fed-batch mixed cultures and renewable resources", Water Science and Technology, 53(6), 15-20.
Mengmeng, C., Hong, C., Qingliang, Z., Shirley, S.N., and Jie, R., (2009), "Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation", Bioresource Technology, 100(3), 1399-1405.
Mino, T., Liu, W., Satoh,H., and Matsuo, T., (1996), "Possible metabolisms of polyphosphate accumulating organisms (PAOs) and glycogen accumulating non-poly-P organisms (GAOs) in the enchanged biological phosphate removal process", Medelingen-Faculteit Landbouwkudige En Toegepaste Biologische Wetenschappen, 61, 1769-1776.
Montiel-Jarillo, G., Carrera, J., and Suarez-Ojeda, M.E., (2017), "Enrichment of a mixed microbial culture for polyhydroxyalkanoates production: Effect of pH and N and P concentrations", Science of the Total Environment, 583(1), 300-307.
Morgan-Sagastume, F., Karlsson, A., Johansson, P., Boon, N., Lant, P., and Werker, A., (2010), "Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus", Water Research, 44(18), 5196-5211.
Morgan-Sagastume, F., Valentino, F., Hjort, M., Cirne, D., Karabegovic, L., Gerardin, F., Johansson, P., Karlsson, A., Magnusson, P., and Alexandersson,T., (2014), "Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment", Water Science and Technology, 69(1), 177-184.
Muhammadi, S., Afzal, M., and Hameed, S.J., (2015), "Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: Production, biocompatibility, biodegradation, physical properties and applications", Journal of Green Chemistry Letters and Reviews, 8(3-4), 56-77.
Oehmen, A., Pinto, F.V., SilvaI, V., Albuque, M.G., and Reis, M.A., (2014), "The impact of pH control on the volumetric productivity of mixed culture PHA production from fermented molasses", Engineering in Life Sciences, 14(2), 143-152.
Oliveria, C.S., Silva, C.E., Carvalho, G., and Reis, M.A., (2017), "Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities", New Biotechnology, 37(part A), 69-79.
Ozdemir, S., Akman, D., Cirik, K., and Cinar, O., (2014), "Effect of cycle time on polyhydroxybutyrate (PHB) production in aerobic mixed cultures",  Applied Biochemistry and Biotechnology, 172(5), 2390-2399.
Qu, B., and Liu, J., (2009). "Determination of optimum operating conditions for production of polyhydroxybutyrate by activated sludge submitted to dynamic feeding regime", Chinese Science Bulletin, 54(1), 142-149.
Queiros, D., Rossetti, S., and Serafim, L.S., (2014), "PHA production by mixed cultures: a way to valorize wastes from pulp industry", Bioresource Technology, 157(1), 197-205.
Satoh, H., Iwamoto, Y., Mino, T., and Matsuo, T.J., (1998), "Activated sludge as a possible source of biodegradable plastic", Water Science and Technology, 38(2), 103-109.
Serafim, L.S., Lemos, P.C., Albuquerque, M.G., and Reis, M.A., (2008a), "Strategies for PHA production by mixed cultures and renewable waste materials", Applied Microbiology and Biotechnology, 81(4), 615-628.
Serafim, L.S., Lemos, P.C.,  Oliveria, R., and Reis, M.A., (2004), "Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions", Biotechnology and Bioengineering. 87(2), 145-160.
Serafim, L.S., Lemos, P.C., Torres, C., Reis, M.A., and Ramos, A.M., (2008b), "The influence of process parameters on the characteristics of polyhydroxyalkanoates produced by mixed cultures", Macromolecular Bioscience, 8(4), 355-366.
Shi, H., Shiraishi, M., and Shimizu, K., (1997), "Metabolic flux analysis for biosynthesis of poly (β-hydroxybutyric acid) in Alcaligenes eutrophus from various carbon sources", Journal of Fermentation and Bioengineering, 84(6), 587-579.
Smolders, G., Vandermeij, J., Van Looedrecht, M., and Heijnen, J., (1994), "Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process", Biotechnology and Bioengineering, 44(7), 837-848.
Takabatake, H., Satoh, H., Mino, T., and Mastsuo, T., (2002), "PHA (polyhydroxyalkanoate) production potential of activated sludge treating wastewater", Water Science and Technology, 45(12), 119-126.
Traverso, P., Pavan, P., Bolzonella, D., Innocent, L., Cecchi, F., and Mata-Alvarez, J., (2000), "Acidogenic fermentation of source separated mixtures of vegetables and fruits wasted from supermarkets", Biodegradation,11(6), 407-414.
Valentino, F., Beccari, M., Fraraccio, S., Zanaroli, G., and Majone, M., (2014), "Feed frequency in a sequencing batch reactor strongly affects the production of polyhydroxyalkanoates (PHAs) from volatile fatty acids", New Biotechnology, 31(4), 264-275.
Valentino, F., Brusca, A. A., Beccari, M., Nuzzo, A., Zanaroli, G., and Majone, M., (2013), "Start up of biological sequencing batch reactor (SBR) and short‐term biomass acclimation for polyhydroxyalkanoates production", Journal of Chemical Technology & Biotechnology, 88(2), 261-270.
Valentino, F.,  Morgan-Sagastume, F., Fraraccio, S., Corsi, G., Zanaroli, G., Werker, A., and Majone, M., (2015), "Sludge minimization in municipal wastewater treatment by polyhydroxyalkanoate (PHA) production", Environmental Science and Pollution Research, 22(10), 7281-7294.
Van Aalst‐Van Leeuwen, M., Pot, M., Van Loosdrecht, M., and Heijnen, J., (1997), "Kinetic modeling of poly (β‐hydroxybutyrate) production and consumption by Paracoccus pantotrophus under dynamic substrate supply", Biotechnology and Bioengineering, 55(5), 773-782.
Van Loosdrecht, M., Pot, M., and Heijnen, J., (1997), "Importance of bacterial storage polymers in bioprocesses", Water Science and Technology, 35(1), 41-47.
Villano, M., Beccari, M., Dionisi, D., Lampis, S., Miccheli, A., Vallini, G., and Majone, M., (2010), "Effect of pH on the production of bacterial polyhydroxyalkanoates b.y mixed cultures enriched under periodic feeding", Process Biochemistry, 45(5), 714-723.
Villano, M., Valentino, F., Barbetta, A., Martino, L., Scandola, M., and Majone, M., (2014), "Polyhydroxyalkanoates production with mixed microbial cultures: From culture selection to polymer recovery in a high-rate continuous process", New Biotechnology, 31(4), 289-296.
Wen, Q., Chen, Z., Wang, C., and Ren, N., (2012), "Bulking sludge for PHA production: Energy saving and comparative storage capacity with well-settled sludge", Journal of Environmental Sciences, 24(10), 1744-1752.